【題目】已知,在△ABC中,∠ABC=90,點O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D.E.F是垂足,且AB=17,BC=15,則OF、OE、OD的長度分別是( )
A. 2,2,2 B. 3,3,3 C. 4,4,4 D. 5,5,5
【答案】B
【解析】
由角平分線的性質(zhì)易得OE=OF=OD,AE=AF,CE=CD,BD=BF,設(shè)OE=OF=OD=x,則CE=CD=x,BD=BF=15-x,AF=AE=8-x,所以15-x+8-x=17,解答即可.
解:如圖,
連接OB,
∵點O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,
∴OE=OF=OD,
又∵OB是公共邊,
∴Rt△BOF≌Rt△BOD(HL),
∴BD=BF,
同理,AE=AF,CE=CD,
∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,
∴OECD是正方形,
設(shè)OE=OF=OD=x,則CE=CD=x,BD=BF=15-x,AF=AE=8-x,
所以15-x+8-x=17
解得x=3.
則OE=OF=OD=3,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數(shù)關(guān)系如圖所示(當4≤x≤10時,y與x成反比例).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P自點A向D以1cm/s的速度運動,到D點即停止.點Q自點C向B以2cm/s的速度運動,到B點即停止,直線PQ截梯形為兩個四邊形.問當P,Q同時出發(fā),幾秒時其中一個四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師舉了下面的例題:
例1 等腰三角形中,,求的度數(shù).(答案:)
例2 等腰三角形中,,求的度數(shù).(答案:或或)
張老師啟發(fā)同學們進行變式,小敏編了如下一題:
變式 等腰三角形中,,求的度數(shù).
(1)請你解答以上的變式題.
(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設(shè),當有三個不同的度數(shù)時,請你探索的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)市場規(guī)定,一次購買蘋果不超過100kg(包括100kg),批發(fā)價為5元,如果一次購買100kg以上蘋果,超過100kg的部分蘋果價格打8折.
(I)請?zhí)顚懴卤?/span>
購買量/kg | 0 | 50 | 100 | 150 | 200 | … |
付款金額/元 | 0 | 250 | _ | 700 | __ | … |
(Ⅱ)寫出付款金額關(guān)于購買量的函數(shù)解析式;
(Ⅲ)如果某人付款2100元,求其購買蘋果的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自學下面材料后,解答問題.
分母中含有未知數(shù)的不等式叫分式不等式.如:;等.那么如何求出它們的解集呢?根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:
(1)若>0,>0,則>0;若<0,<0,則>0;
(2)若>0,<0,則<0;若<0,>0,則<0.
反之:(1)若>0,則或
(2)若<0,則__________或__________.
(3)根據(jù)上述規(guī)律,求不等式的解集.
(4)試求不等式的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣(2k+1)x+k2+k(k>0)
(1)當k= 時,求這個二次函數(shù)的頂點坐標;
(2)求證:關(guān)于x的一元次方程x2﹣(2k+1)x+k2+k=0有兩個不相等的實數(shù)根;
(3)如圖,該二次函數(shù)與x軸交于A、B兩點(A點在B點的左側(cè)),與y軸交于C點,P是y軸負半軸上一點,且OP=1,直線AP交BC于點Q,求證: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD繞點B逆時針旋轉(zhuǎn)30°后得到矩形A1BC1D1 , C1D1與AD交于點M,延長DA交A1D1于F,若AB=1,BC= ,則AF的長度為( )
A.2﹣
B.
C.
D. ﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com