【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C滿足二次函數(shù)y=ax2+bx的表達(dá)式,則對(duì)該二次函數(shù)的系數(shù)a和b判斷正確的是( )

A.a>0,b>0
B.a<0,b<0
C.a>0,b<0
D.a<0,b>0

【答案】D
【解析】解:過點(diǎn)A、B、C、O大致畫出拋物線圖象,如圖所示.

觀察函數(shù)圖象,可知:拋物線開口向下,對(duì)稱軸在y軸右側(cè),

∴a<0,﹣ >0,

∴b>0.

所以答案是:D.

【考點(diǎn)精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB,BD,BC于點(diǎn)E,F(xiàn),G,連接ED,DG.

(1)△EFD≌△GFB.
(2)試判斷四邊形FBGD的形狀,并說明理由.
(3)當(dāng)△ABC滿足條件時(shí),四邊形FBGD是正方形(不用說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24厘米,AB=8厘米,BC=30厘米,動(dòng)點(diǎn)P從A開始沿AD邊向D以每秒1厘米的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿CB邊向B以每秒3厘米的速度運(yùn)動(dòng),P,Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t在什么時(shí)間范圍時(shí),CQ>PD?
(2)存在某一時(shí)刻t,使四邊形APQB是正方形嗎?若存在,求出t值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測得落在平臺(tái)上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),2次接著運(yùn)動(dòng)到點(diǎn)(2,0),3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第2 018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是( )

A. (2018,0) B. (2018,1) C. (2018,2) D. (2017,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,反比例函數(shù)y=x0)的圖象經(jīng)過矩形OABC的對(duì)角線AC的中點(diǎn)M,分別與ABBC交于點(diǎn)D、E,若BD=3,OA=4,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x+m與y= 在第一象限交于點(diǎn)A,且與x軸交于點(diǎn)C,AB⊥x軸,垂足為B,且SAOB=1.

(1)求m的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長分別為,第三邊上的高為.請(qǐng)你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊答案