年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
|x2-x1|2+|y2-y1|2 |
(x-0)2+(y-0)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
100 |
n=1 |
50 |
n=1 |
50 |
n=1 |
50 |
n=1 |
50 |
n=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
閱讀下列材料后回答問(wèn)題:
在平面直角坐標(biāo)系中,已知x軸上的兩點(diǎn)A(X1,0),B(X2,0)的距離記作,如果是平面上任意兩點(diǎn),我們可以通過(guò)構(gòu)造直角三角形來(lái)求A、B間的距離。
如圖,過(guò)A、B兩點(diǎn)分別向x軸、y軸作垂線(xiàn)AM1、AN1和BM2、BN2,垂足分別記作,、,,直線(xiàn)AN1與BM2交于Q點(diǎn)。
在Rt△ABQ中,,∵,
∴
由此得任意兩點(diǎn)之間的距離公式:
如果某圓的圓心為(0,0),半徑為r。設(shè)P(x,y)是圓上任一點(diǎn),根據(jù)“圓上任一點(diǎn)到定點(diǎn)(圓心)的距離都等于定長(zhǎng)(半徑)”,我們不難得到,即:, 整理得:。我們稱(chēng)此式為圓心在原點(diǎn),半徑為r的圓的方程。
(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求點(diǎn) 之間的距離;
(2)如果圓心在點(diǎn)P(2,3),半徑為3,求此圓的方程。
(3)方程是否是圓的方程?如果是,求出圓心坐標(biāo)與半徑。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com