若△ABC與△A1B1C1的相似比為0.5,則△A1B1C1與△ABC的相似比為________,這說明兩個相似三角形的相似比具有________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖①,將一張矩形紙片對折,然后沿虛線剪切,得到兩個(不等邊)三角形紙片△ABC,△A1B1C1
精英家教網(wǎng)
﹙1﹚將△ABC,△A1B1C1如圖②擺放,使點A1與B重合,點B1在AC邊的延長線上,連接CC1交BB1于點E.求證:∠B1C1C=∠B1BC.
﹙2﹚若將△ABC,△A1B1C1如圖③擺放,使點B1與B重合,點A1在AC邊的延長線上,連接CC1交A1B于點F,試判斷∠A1C1C與∠A1BC是否相等,并說明理由.
﹙3﹚寫出問題﹙2﹚中與△A1FC相似的三角形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°),得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)求證:BE=BF;
(2)當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由;
(3)在(2)的條件下,四邊形DEBF的內(nèi)部是否存在一個圓O,使得⊙O與四邊形DEBF的四邊都相切?若存在,請求出⊙O的半徑;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面資料:
小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B=2AB,B1C=2BC,C1A=2CA,根據(jù)等高兩三角形的面積比等于底之比,所以SA1BC=SB1CA=SC1AB=2S△ABC=2a,由此繼續(xù)推理,從而解決了這個問題.

(1)直接寫出S1=
19a
19a
(用含字母a的式子表示).
請參考小明同學思考問題的方法,解決下列問題:
(2)如圖3,P為△ABC內(nèi)一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標明,求△ABC的面積.
(3)如圖4,若點P為△ABC的邊AB上的中線CF的中點,求S△APE與S△BPF的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,將一張矩形紙片對折,然后沿虛線剪切,得到兩個(不等邊)三角形紙片△ABC,△A1B1C1.  

﹙1﹚將△ABC,△A1B1C1如圖②擺放,使點A1與B重合,點B1在AC邊的延長線上,連接CC1交BB1于點E.求證:∠B1C1C=∠B1BC.    

﹙2﹚若將△ABC,△A1B1C1如圖③擺放,使點B1與B重合,點A1在AC邊的延長線上,連接CC1交A1B于點F.試判斷∠A1C1C與∠A1BC是否相等,并說明理由.

﹙3﹚寫出問題﹙2﹚中與△A1FC相似的三角形                          .

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(遼寧丹東) 題型:解答題

如圖①,將一張矩形紙片對折,然后沿虛線剪切,得到兩個(不等邊)三角形紙片△ABC,△A1B1C1.  

﹙1﹚將△ABC,△A1B1C1如圖②擺放,使點A1與B重合,點B1在AC邊的延長線上,連接CC1交BB1于點E.求證:∠B1C1C=∠B1BC.    

﹙2﹚若將△ABC,△A1B1C1如圖③擺放,使點B1與B重合,點A1在AC邊的延長線上,連接CC1交A1B于點F.試判斷∠A1C1C與∠A1BC是否相等,并說明理由.

﹙3﹚寫出問題﹙2﹚中與△A1FC相似的三角形                           .

 

查看答案和解析>>

同步練習冊答案