已知,如圖,線段AB⊥BC,DC⊥BC,垂足分別為點(diǎn)B、C.
(1)當(dāng)AB=6,DC=2,BC=8時(shí),點(diǎn)P在線段BC運(yùn)動(dòng),不與點(diǎn)B、C重合.
①若△ABP與△PCD可能全等,請(qǐng)直接寫出的值;
②若△ABP與△PCD相似,求線段BP的長(zhǎng).
(2)探究:設(shè)AB=a,DC=b,AD=c,那么當(dāng)a、b、c之間滿足什么關(guān)系時(shí),在直線BC上存在點(diǎn)P,使AP⊥PD?

【答案】分析:(1)①題根據(jù)全等三角形的性質(zhì)即可得出答案,②根據(jù)△ABP∽△PCD,利用其對(duì)應(yīng)邊成比例,將已知數(shù)值代入即可求出線段BP的長(zhǎng).
(2)題在一般情形下探究三條線段滿足何種關(guān)系,才存在結(jié)論AP⊥PD,其探究的方法有多種,這里僅探討順著解第(1)題的思路,貫徹“特殊到一般”的思想,繼續(xù)用相似三角形的知識(shí)拾階而上來(lái)研究.首先,求出BC,再設(shè)存在這樣的點(diǎn)P,且BP=x,則PC=-x,由AP⊥PD得,△ABP∽△PCD,則化簡(jiǎn)得.
解答:解:(1)∵△ABP≌△PCD,
∴AB=PC=6,
BP=CD=2,
==,
②當(dāng)△ABP∽△PCD,
=,
=,
解得BP=2,
當(dāng)△ABP∽△DCP,
=,
=,
解得BP=6;
∴BP=2或BP=6;

(2)過(guò)D作DE⊥AB與E,得CD=BE=b,AE=a-b,
BC=DE==,
設(shè)BP=x,
由(1)得△ABP∽△PCD,=,
x2-x+ab=0,
若存在點(diǎn)P,則此方程有實(shí)數(shù)根,
∴△=c2-(a-b)2-4ab=c2-(a+b)2≥0,
∴c≥a+b
∴c≥a+b時(shí),在直線BC上存在點(diǎn)P,AP⊥PD.
點(diǎn)評(píng):本題可以假設(shè)存在,根據(jù)相似三角形的性質(zhì),利用比例式,找出P點(diǎn).這是此題的突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,線段AB⊥BC,DC⊥BC,垂足分別為點(diǎn)B、C.
(1)當(dāng)AB=6,DC=2,BC=8時(shí),點(diǎn)P在線段BC運(yùn)動(dòng),不與點(diǎn)B、C重合.
①若△ABP與△PCD可能全等,請(qǐng)直接寫出
BPPC
的值;
②若△ABP與△PCD相似,求線段BP的長(zhǎng).
(2)探究:設(shè)AB=a,DC=b,AD=c,那么當(dāng)a、b、c之間滿足什么關(guān)系時(shí),在直線BC上存在點(diǎn)P,使AP⊥PD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、已知,如圖,線段AB上有任一點(diǎn)M,分別以AM,BM為邊長(zhǎng)作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圓⊙O、⊙O′交于M、N兩點(diǎn),則直線MN的情況是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,線段AB=10cm,點(diǎn)O是線段AB的中點(diǎn),線段BC=3cm,則線段OC=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,線段AB=10cm,點(diǎn)C為線段AB上一點(diǎn),BC=3cm,點(diǎn)D、點(diǎn)E分別為AC和AB的中點(diǎn),則線段DE的長(zhǎng)為
 
cm,請(qǐng)對(duì)你所得到的結(jié)論加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,線段AB、DE表示一個(gè)斜靠在墻上的梯子的兩個(gè)不同的位置,若CB=3m,∠ABC=45°,要使∠EDC=60°,則需BD=
3-
3
2
2
3-
3
2
2
m.

查看答案和解析>>

同步練習(xí)冊(cè)答案