已知拋物線y=x2與動直線y=(2t-1)x-c有公共點(x1,y1),(x2,y2),且x12+x22=t2+2t-3.
(1)求實數(shù)t的取值范圍;
(2)當(dāng)t為何值時,c取到最小值,并求出c的最小值.
(1)聯(lián)立y=x2與y=(2t-1)x-c,
消去y得二次方程x2-(2t-1)x+c=0①
有實數(shù)根x1,x2,則x1+x2=2t-1,x1x2=c.
所以c=x1x2=
1
2
[(x1+x2)2-(
x21
+
x22
)]

=
1
2
[(2t-1)2-(t2+2t-3)]
=
1
2
(3t2-6t+4)

把②式代入方程①得x2-(2t-1)x+
1
2
(3t2-6t+4)=0

t的取值應(yīng)滿足t2+2t-3=x12+x22≥0,④
且使方程③有實數(shù)根,即△=(2t-1)2-2(3t2-6t+4)=-2t2+8t-7≥0,⑤
解不等式④得t≤-3或t≥1,
解不等式⑤得2-
2
2
≤t≤2+
2
2

所以,t的取值范圍為2-
2
2
≤t≤2+
2
2
.⑥

(2)由②式知c=
1
2
(3t2-6t+4)=
3
2
(t-1)2+
1
2

由于c=
3
2
(t-1)2+
1
2

2-
2
2
≤t≤2+
2
2
時是遞增的,
所以,當(dāng)t=2-
2
2

時,cmin=
3
2
(2-
2
2
-1)2+
1
2
=
11-6
2
4

答:當(dāng)t=2-
2
2
時,c有最小值:cmin=
3
2
(2-
2
2
-1)2+
1
2
=
11-6
2
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2與動直線y=(2t-1)x-c有公共點(x1,y1),(x2,y2),且x12+x22=t2+2t-3.
(1)求實數(shù)t的取值范圍;
(2)當(dāng)t為何值時,c取到最小值,并求出c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2與動直線y=(2t-1)x-c有兩個不同的公共點A(x1,y1),B(x2,y2),且
x
2
1
+
x
2
2
=2t2+2t+3

(1)求實數(shù)t的取值范圍;
(2)當(dāng)t為何值時,c取到最小值,并求出c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省中考數(shù)學(xué)全真模擬試卷(四)(解析版) 題型:解答題

已知拋物線y=x2與動直線y=(2t-1)x-c有兩個不同的公共點A(x1,y1),B(x2,y2),且
(1)求實數(shù)t的取值范圍;
(2)當(dāng)t為何值時,c取到最小值,并求出c的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年高一新生入學(xué)考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

已知拋物線y=x2與動直線y=(2t-1)x-c有公共點(x1,y1),(x2,y2),且x12+x22=t2+2t-3.
(1)求實數(shù)t的取值范圍;
(2)當(dāng)t為何值時,c取到最小值,并求出c的最小值.

查看答案和解析>>

同步練習(xí)冊答案