【題目】甲、乙兩車在同一直線上從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早出發(fā)2h,并且甲車途中休息了0.5h,如圖是甲、乙兩車離開A地的距離y(km)與甲行駛時間x(h)的函數(shù)圖象.根據(jù)圖中提供的信息,有下列說法:(1)m的值為1;(2)a的值為40;(3)乙車比甲車早h到達B地. 其中正確的有( )
A.3個B.2個C.1個D.0個
【答案】A
【解析】
先由函數(shù)圖象中的信息求出m的值,再根據(jù)“路程÷時間=速度”求出甲的速度,并求出a的值;先根據(jù)圖形判斷甲、乙兩車中先到達B地的是乙車,再把y=260代入y=40x-20求得甲車到達B地的時間,再求出乙車行駛260km需要260÷80=3.25h,即可得到結(jié)論;
解:由題意,得m=1.5-0.5=1.故(1)正確,
甲的速度為:120÷(3.5-0.5)=40(km/h),
則a= =40,故(2)正確;
乙的速度為:120÷(3.5-2)=80km/h(千米/小時),
設(shè)甲車休息之后行駛路程y(km)與時間x(h)的函數(shù)關(guān)系式為y=kx+b,由題意,得
解得: ,
y=40x-20,
根據(jù)圖形得知:甲、乙兩車中先到達B地的是乙車,
把y=260代入y=40x-20得,x=7,
∵乙車的行駛速度:80km/h,
∴乙車的行駛260km需要260÷80=3.25h,
,
∴甲比乙遲到達B地,故(3)正確;
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則6小時可到達乙地.
(1)寫出時間t(時)關(guān)于速度v(千米/時)的函數(shù)關(guān)系式,并畫出函數(shù)圖象.
(2)若這輛汽車需在5小時內(nèi)從甲地到乙地,則此時汽車的平均速度至少應(yīng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形中,點分別在上,△是等邊三角形,連接交于,給出下列結(jié)論:
①; ② ;
③垂直平分; ④.
其中結(jié)論正確的共有( ).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西民間的雕刻藝術(shù)源遠流長,主要以古代傳統(tǒng)吉祥紋樣為素材,以石雕、木雕磚雕等形式,來體現(xiàn)主人的高尚情操和文化修養(yǎng)以及人們的美好愿望.某木雕經(jīng)銷商購進“木象”和“木馬”兩種雕刻藝術(shù)品,購“木象”藝術(shù)品共用了元,“木馬”藝術(shù)品共用了元已知“木馬”每件的進價比“木象”每件的進價貴元,且購進“木象”“木馬”的數(shù)量相同.
求每件“木象”、“木馬”藝術(shù)品的進價;
該經(jīng)銷商將購進的兩種藝術(shù)品進行銷售,“木象”的銷售單價為元,“木馬”的銷售單價為元,銷售過程中發(fā)現(xiàn)“木象”的銷量不好,經(jīng)銷商決定:“木象”銷售一定數(shù)量后,將剩余的“木象”按原銷售單價的七折銷售;“木馬”的銷售單價保持不變要使兩種藝術(shù)品全部售完后共獲利不少于元,問“木象”按原銷售單價應(yīng)至少銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級學(xué)生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學(xué)生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為負整數(shù),求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當(dāng)點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB與x軸、y軸分別交于點A和點B,OA=4,且OA,OB長是關(guān)于x的方程x2﹣mx+12=0的兩實根,以OB為直徑的⊙M與AB交于C,連接CM,交x軸于點N,點D為OA的中點.
(1)求證:CD是⊙M的切線; (2)求線段ON的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com