如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).

(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?

(2)你感到折合而成的長方體盒子的側面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;

 

【答案】

(1)設正方形的邊長為cm,則

. 即.    

解得(不合題意,舍去),

剪去的正方形的邊長為1cm.

(2)有側面積最大的情況.

設正方形的邊長為cm,盒子的側面積為cm2,

的函數(shù)關系式為:

.即

改寫為.    

時,

即當剪去的正方形的邊長為2.25cm時,長方體盒子的側面積最大為40.5cm2

【解析】(1)等量關系為:(原來長方形的長-2正方形的邊長)×(原來長方形的寬-2正方形的邊長)=48,把相關數(shù)值代入即可求解;

(2)同(1)先用x表示出不同側面的長,然后根據(jù)矩形的面積將4個側面的面積相加,得出關于側面積和正方形邊長的函數(shù)式,然后根據(jù)函數(shù)的性質和自變量的取值范圍來得出側面積的最大值.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).
(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少;
(2)你感到折合而成的長方體盒子的側面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;
(3)如果把矩形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的矩形,然后折合成一個有蓋的長方體盒子,是否有側面積最大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個大小一樣的正方形,再折成一個無蓋的長方體盒子.要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?(紙板的厚度忽略不計.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).
(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?
(2)你感到折合而成的長方體盒子的側面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,把一張長10cm,寬8cm的長方形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).
(1)要使無蓋長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?
(2)你認為折合而成的無蓋長方體盒子的側面積有可能等于52cm2嗎?請說明理由;
(3)如果把長方形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的長方形,然后折合成一個有蓋的長方體盒子,那么它的側面積(指的是高為剪去的正方形邊長的長方體的側面積)可以達到30cm2嗎?請說明理由.

查看答案和解析>>

同步練習冊答案