(2010•門頭溝區(qū)一模)已知反比例函數(shù)y=的圖象經(jīng)過點P(2,2),直線y=-x沿y軸向上平移后,與反比例函數(shù)圖象交于點Q(1,m).
(1)求k的值;
(2)求平移后直線的解析式.
【答案】分析:(1)根據(jù)反比例函數(shù)的圖象過定點,得k=4;
(2)根據(jù)反比例函數(shù)圖象過點Q(1,m),求出m,再求平移后直線的解析式.
解答:解:(1)由題意得,(1分)
解得,k=4(2分)

(2)反比例函數(shù)解析式為y=
由題意得,=m.
解得,m=4.(3分)
設(shè)平移后直線解析式為y=-x+b
∵直線過Q(1,4)
-1+b=4
解得,b=5(4分)
∴平移后直線解析式為y=-x+5(5分)
點評:用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式.求直線平移后的解析式時要注意平移時k的值不變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•門頭溝區(qū)一模)關(guān)于x的一元二次方程(m2-1)x2-2(m-2)x+1=0.
(1)當(dāng)m為何值時,方程有兩個不相等的實數(shù)根;
(2)點A(-1,-1)是拋物線y=(m2-1)x2-2(m-2)x+1上的點,求拋物線的解析式;
(3)在(2)的條件下,若點B與點A關(guān)于拋物線的對稱軸對稱,是否存在與拋物線只交于點B的直線,若存在,請求出直線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市中考模擬試卷匯總:圓(解析版) 題型:解答題

(2010•門頭溝區(qū)一模)已知:如圖,BE是⊙O的直徑,CB與⊙O相切于點B,OC∥DE交⊙O于點D,CD的延長線與BE的延長線交于A點.
(1)求證:AC是⊙O的切線;
(2)若AD=4,CD=6,求tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•門頭溝區(qū)一模)閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當(dāng)2b<a時,如圖1,在BA上選取點G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點F逆時針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點F作FM⊥AE于點M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是______;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市門頭溝區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•門頭溝區(qū)一模)已知a2-a=0,求的值.

查看答案和解析>>

同步練習(xí)冊答案