【題目】如圖1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB內(nèi)部的一條射線,且OF平分∠AOE.
(1)若∠EOB=30°,則∠COF= ;
(2)若∠COF=20°,則∠EOB= ;
(3)若∠COF=n°,則∠EOB= (用含n的式子表示).
(4)當(dāng)射線OE繞點(diǎn)O逆時針旋轉(zhuǎn)到如圖2的位置時,請把圖補(bǔ)充完整;此時,∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請說明理由.
【答案】(1)25°;(2)40°;(3)80°﹣2n°;(4)∠EOB=80°+2∠COF.
【解析】試題分析:(1)先求出∠AOE,再根據(jù)角平分線的定義求出∠AOF,然后根據(jù)∠COF=∠AOF-∠AOC代入數(shù)據(jù)計算即可得解;
(2)先求出∠AOF,再根據(jù)角平分線的定義求出∠AOE,然后根據(jù)∠EOB=∠AOB-∠AOE代入數(shù)據(jù)計算即可得解;
(3)與(2)的思路相同求解即可;
(4)設(shè)∠COF=n°,先表示出∠AOF,然后根據(jù)角平分線的定義求出∠AOE,再根據(jù)∠EOB=∠AOB-∠AOE代入計算即可得解.
試題解析:
(1)∵∠AOB=140°,∠EOB=30°,
∴∠AOE=∠AOB-∠EOB=140°-30°=110°,
∵OF平分∠AOE,
∴∠AOF= ∠AOE=×110°=55°,
∴∠COF=∠AOF-∠AOC,
=55°-30°,
=25°;
故答案為:25°;
(2)∵∠AOC=30°,∠COF=20°,
∴∠AOF=∠AOC+∠COF=30°+20°=50°,
∵OF平分∠AOE,
∴∠AOE=2∠AOF=2×50°=100°,
∴∠EOB=∠AOB-∠AOE=140°-100°=40°;
故答案為:40°;
(3)∵∠AOC=30°,∠COF=n°,
∴∠AOF=∠AOC+∠COF=30°+n°,
∵OF平分∠AOE,
∴∠AOE=2∠AOF=2(30°+n°)=60°+2n°,
∴∠EOB=∠AOB-∠AOE=140°-(60°+2n°)=80°-2n°;
故答案為:80°-2n°;
(4)如圖所示:∠EOB=80°+2∠COF.
證明:設(shè)∠COF=n°,則∠AOF=∠AOC-∠COF=30°-n°,
又∵OF平分∠AOE,
∴∠AOE=2∠AOF=60°-2n°.
∴∠EOB=∠AOB-∠AOE=140°-(60°-2n°)=(80+2n)°
即∠EOB=80°+2∠COF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 有一組鄰邊相等的四邊形是菱形
B. 有一個角是直角的平行四邊形是矩形
C. 對角線垂直的平行四邊形是正方形
D. 一組對邊平行的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備與汽車租憑公司簽訂租車合同,以每月用車路程x km計算,甲汽車租憑公司每月收取的租賃費(fèi)為y1元,乙汽車租憑公司每月收取的租賃費(fèi)為y2元,若y1、y2與x之間的函數(shù)關(guān)系如圖所示(其中x=0對應(yīng)的函數(shù)值為月固定租賃費(fèi)),則下列判斷錯誤的是( )
A.當(dāng)月用車路程為2000km時,兩家汽車租賃公司租賃費(fèi)用相同
B.當(dāng)月用車路程為2300km時,租賃乙汽車租賃公司車比較合算
C.除去月固定租賃費(fèi),甲租賃公司每公里收取的費(fèi)用比乙公司多
D.甲租賃公司每月的固定租賃費(fèi)高于乙租賃公司
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)P在AB上,點(diǎn)Q在DC的延長線上,連接DP,QP,且∠APD=∠QPD,PQ交BC于點(diǎn)G.
(1)求證:DQ=PQ;
(2)求AP·DQ的最大值;
(3)若P為AB的中點(diǎn),求PG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元一次方程的解是一元一次不等式組的解,那么稱該一元一次方程為該不等式組的關(guān)聯(lián)方程.
(1)若不等式組的一個關(guān)聯(lián)方程的解是整數(shù),則這個關(guān)聯(lián)方程可以是 (寫出一個即可);
(2)若方程3-x=2x,3+x=2(x+)都是關(guān)于的不等式組的關(guān)聯(lián)方程,試求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別為40、50、60.其三條角平分線交于點(diǎn)O,則S△ABO:S△BCO:S△CAO=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列算式:①(a3)2=a3×2=a6;②aman=am+n(m,n為正整數(shù));③[(-x)4]5=-x20.其中正確的算式有( ).
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)1,3,3,4,5的眾數(shù)和中位數(shù)分別為( )
A.3和3B.3和3.5C.4和4D.5和3.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com