【題目】學(xué)校計劃在如圖所示的空地 ABCD 上種植草皮,經(jīng)測量∠ADC90°CD 6m ,AD 8m AB26m , BC 24m .

1)求出空地 ABCD 的面積;

2)若每種植 1 平方米草皮需要 200 元,問總共需投入多少元.

【答案】196

219200.

【解析】

1)在直角三角形ACD中可求得AC的長,由AC、AB、BC的長度關(guān)系可得三角形ABC為一直角三角形,AB為斜邊;由此看,四邊形ABCD的面積等于RtABC面積減RtACD的面積解答即可;
2)根據(jù)題意列式計算即可.


解:(1)在RtACD中,,
在△ABC中,,,
,
,
,

.

2)需費用96×200=19200(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( .

①作出AD的依據(jù)是SAS;②∠ADC=60°

③點DAB的中垂線上;④SDACSABD=12

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.

(1)B出發(fā)時與A相距  千米.

(2)B出發(fā)后  小時與A相遇.

(3)B走了一段路后,自行車發(fā)生故障,進行 修理,所用的時間是  小時.

(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,  小時與A相遇,相遇點離B的出發(fā)點  千米.在圖中表示出這個相遇點C.

(5)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次研究性學(xué)習(xí)活動中,同學(xué)們看到了工人師傅在木板上畫一個直角三角形的過程(如圖所示):畫線段AB,過點A任作一條直線l,以點A為圓心,以AB長為半徑畫弧,與直線l相交于兩點C、D,連接BCBD.則BCD就是直角三角形.

1)請你說明BCD是直角三角形的道理;

2)請利用上述方法作一個直角三角形,使其中一個銳角為60°(不寫作法,保留作圖

痕跡,在圖中注明60°的角).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).

(1)求該拋物線的解析式;

(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);

(3)若點Qx軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=

由題意知,圖象經(jīng)過點(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點E為ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,軸分別交于點,,與反比例函數(shù)圖象交于點,,過點軸的垂線交該反比例函數(shù)圖象于點

求點的坐標(biāo).

①求的值.

②試判斷點與點是否關(guān)于原點成中心對稱?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.

(1)A、B兩種商品的單價分別是多少元?

(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?

查看答案和解析>>

同步練習(xí)冊答案