科目:初中數(shù)學 來源: 題型:
同一平面直角坐標系中,一次函數(shù)y=k1x+b的圖像與一次函數(shù)y=k2x的圖像如圖所示,則關于x的方程k1x-b=k2x的解為 ( )
A.x=0 B.x=-1 C.x=-2 D.x=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:如圖1,△ABC中,AB=13,BC=14,AC=15.將線段AB沿過點A的直線翻折,使得點B的對應點E恰好落在BC邊上,折痕與BC邊相交于點D,如圖2所示.
(1) 求線段DE的長;
(2) 在圖2中,若點P為線段AC上一點,且△AEP為等腰三角形,求AP的長.
小李在解決第(2)小題時的過程如下:
① 當EA=EP時,顯然不存在;當AE=AP時,則AP=__________;(需填空)
② 對于“當PA=PE時的情形”,小李在解決時遇到了困難.小明老師對小李說:對于這個“直線形”圖形直接解決困難時,我們可以建立平面直角坐標系,用一次函數(shù)的知識解決.如以點D為坐標原點,BC所在直線為x軸,然后求出AE中垂線的直線解析式,然后求出點P的坐標,最后用勾股定理求出AP的長……
請根據(jù)小明老師的提示完成第(2)題中②的求解,你也可以用自己的方法求出AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
作圖題. △ABC在直角坐標系內(nèi)的位置如圖右所示。
(1)分別寫出A、B、C的坐標(3分)
(2)請在這個坐標系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關于軸對稱,
并寫出B1的坐標;(4 分)
(3)請在這個坐標系內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC關于原點對稱,
并寫出A2的坐標;(5分);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com