【題目】“垃圾分類”意識已經(jīng)深入人心.我校王老師準(zhǔn)備用元(全部用完)購買兩類垃圾桶,已知類桶單價元,類桶單價元,設(shè)購入類桶個,類桶個.
(1)求關(guān)于的函數(shù)表達(dá)式.
(2)若購進(jìn)的類桶不少于類桶的倍.
①求至少購進(jìn)類桶多少個?
②根據(jù)臨場實際購買情況,王老師在總費用不變的情況下把一部分類桶調(diào)換成另一種類桶,且調(diào)換后類桶的數(shù)量不少于類桶的數(shù)量,已知類桶單價元,則按這樣的購買方式,類桶最多可買 個.(直接寫出答案)
【答案】(1);(2)①50;②18.
【解析】
(1)根據(jù)題意,通過等量關(guān)系進(jìn)行列式即可得解;
(2)①根據(jù)購進(jìn)的類桶不少于類桶的倍的不等關(guān)系進(jìn)行列式求解即可得解;
②根據(jù)題意設(shè)類桶的數(shù)量為a,根據(jù)A類桶單價與C類桶單價的比值關(guān)系確定不等式,進(jìn)而求解,由總費用不變即可得到B類桶的數(shù)量.
(1)由題意,得,整理得
∴關(guān)于的函數(shù)表達(dá)式為;
(2)①購進(jìn)的類桶不少于類桶的倍
,解得
∴至少購買類桶個;
②當(dāng)時,
∵類桶單價元,類桶單價元
∴類桶單價:類桶單價=2:3
設(shè)調(diào)換后C有a本
由題意得:
解得,可知a時2的倍數(shù)
∵,a為正整數(shù)
∴
∴類桶最多可買18個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐﹣﹣旋轉(zhuǎn)中的數(shù)學(xué)
問題背景:在一次綜合實踐活動課上,同學(xué)們以兩個矩形為對象,研究相似矩形旋轉(zhuǎn)中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:
觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;
操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過程中,(1)中的結(jié)論還成立嗎?若成立,請證明;若不成立,請說明理由;
操作計算:(3)如圖3,在(2)的條件下,當(dāng)矩形A′B′C′D′繞點O旋轉(zhuǎn)至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖,點,,在同一條直線上,連結(jié)DC
(1)請判斷與的位置關(guān)系,并證明
(2)若,,求的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點,過 A 作 y 軸的垂線,交函數(shù)的圖象于點 C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.
(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是 ;
(2)從中隨機(jī)抽出二張牌,兩張牌牌面數(shù)字的和是5的概率是 ;
(3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,中,,點在數(shù)軸-1處,點在數(shù)軸1處,,,則數(shù)軸上點對應(yīng)的數(shù)是 .
(2)如圖2,點是直線上的動點,過點作垂直軸于點,點是軸上的動點,當(dāng)以,,為頂點的三角形為等腰直角三角形時點的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).
(1)如圖①,當(dāng)α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時,(1)中的結(jié)論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=8,點P由點B向點A運動,同時,點Q由點C出發(fā)沿線段AC的延長線運動,已知點P、Q運動速度相等,點Q與線段BC相交于點D,過點P作PE∥AQ,交BC于點E.
(1)如圖1,求證:D為CE中點;
(2)如圖2,過點P作PF⊥BC,垂足為點F,在P、Q的運動過程中,請判斷DF的長度是否為定值;若是,請求出DF的長度;若否,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com