解答:解:(1)由題意得,點(diǎn)D的縱坐標(biāo)為3,
∵點(diǎn)D在直線y=
x上,
∴點(diǎn)D的坐標(biāo)為(9,3),
將點(diǎn)D(9,3)、點(diǎn)A(10,0)代入拋物線可得:
,
解得:
,
故拋物線的解析式為:y=-
x
2+
x.
(2)∵點(diǎn)D坐標(biāo)為(9,3),點(diǎn)A坐標(biāo)為(10,0),
∴OA=10,OD=
=3
,AD=
=
,
從而可得OA
2=OD
2+AD
2,
故可判斷△OAD是直角三角形.
(3)①由圖形可得當(dāng)點(diǎn)P和點(diǎn)N重合時(shí)能滿足△OPM∽△ODA,
此時(shí)∠POM=∠DOA,∠OPM=∠ODA,
故可得△OPM∽△ODA,OP=
OA=5,
即可得此時(shí)點(diǎn)P的坐標(biāo)為(5,0).
②過點(diǎn)O作OD的垂線交對稱軸于點(diǎn)P′,此時(shí)也可滿足△P′OM∽△ODA,
由題意可得,點(diǎn)M的橫坐標(biāo)為5,代入直線方程可得點(diǎn)M的縱坐標(biāo)為
,
故可求得OM=
,
∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,
∴∠OP′M=∠DOA,
∴△P′OM∽△ODA,
故可得
=
,即
=
,
解得:MP′=
,
又∵M(jìn)N=點(diǎn)M的縱坐標(biāo)=
,
∴P′N=
-
=15,
即可得此時(shí)點(diǎn)P′的坐標(biāo)為(5,-15).
綜上可得存在這樣的點(diǎn)P,點(diǎn)P的坐標(biāo)為(5,0)或(5,-15).