【題目】小玲和弟弟小東分別從家和圖書館同時(shí)出發(fā),沿同一條路相向而行,小玲開(kāi)始跑步,中途改為步行,到達(dá)圖書館恰好用時(shí).小東騎自行車以的速度直接回家,兩人離家的路程與各自離開(kāi)出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,下列說(shuō)法正確的有幾個(gè).(

①家與圖書館之間的路程為;

②小玲步行的速度為;

③兩人出發(fā)以后8分鐘相遇;

④兩人出發(fā)以后,、時(shí)相距.

A.1B.2

C.3D.4

【答案】C

【解析】

從圖象中得出小玲跑步的速度,步行的速度,以及小東騎車到家的時(shí)間,逐個(gè)判斷其正確性,最后得出答案.

解:圖象過(guò)(0,4000),因此家與圖書館之間的路程為4000m,①正確,

小玲步行的速度為(40002000)÷(3010)=100m/min,②正確,

小玲跑步的速度為2000÷10200m/min;相遇時(shí)間為4000÷(200300)=8分鐘,③正確,

④家和圖書館之間的距離為4000米,兩人同時(shí)出發(fā),相向而行,兩人相距3000米時(shí),可能在相遇前、相遇后兩種情況,因此兩人出發(fā)以后2min、15mim20min時(shí)相距3000m.是錯(cuò)誤的.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)材料,解答問(wèn)題

如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-4,4,-1,則兩點(diǎn)間的距離為兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)之間的距離,稱之為絕對(duì)值的幾何意義

問(wèn)題應(yīng)用1

1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對(duì)應(yīng)的的值為___________;

2)方程的解____________

3)方程的解______________ ;

問(wèn)題應(yīng)用2

如圖,若數(shù)軸上表示的點(diǎn)為.

4的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;

5的幾何意義是數(shù)軸上_______,的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;

6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動(dòng)至點(diǎn),第二次點(diǎn)跳動(dòng)至點(diǎn)第三次點(diǎn)跳動(dòng)至點(diǎn),第四次點(diǎn)跳動(dòng)至點(diǎn)……,依此規(guī)律跳動(dòng)下去,則點(diǎn)與點(diǎn)之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一面靠墻的空地上用長(zhǎng)為24 m的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x m,面積為S m2.

(1)求S與x的函數(shù)關(guān)系式及自變量的取值范圍;

(2)已知墻的最大可用長(zhǎng)度為8 m,

①求所圍成花圃的最大面積;

②若所圍花圃的面積不小于20 m2,請(qǐng)直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 x 滿足 (9x)(x4)=4, (4x)2+(x9)2 的值.

設(shè) 9x=ax4=b, (9x)(x4)=ab=4a+b=(9x)+(x4)=5 ,

(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13

請(qǐng)仿照上面的方法求解下面問(wèn)題:

(1) x 滿足 (5x)(x2)=2, (5x)2+(x2)2 的值

(2)已知正方形 ABCD 的邊長(zhǎng)為 x , E F 分別是 AD 、 DC 上的點(diǎn),且 AE=1 , CF=3 ,長(zhǎng)方形 EMFD 的面積是 48 ,分別以 MF 、 DF 作正方形,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸、軸交于、兩點(diǎn),軸正半軸上的一個(gè)動(dòng)點(diǎn),連接,將沿翻折,點(diǎn)恰好落在上,則點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在由邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的10×10網(wǎng)格中,已知點(diǎn)O,A,B均為網(wǎng)格線的交點(diǎn).

(1)在給定的網(wǎng)格中以點(diǎn)O為位似中心,將線段AB放大為原來(lái)的2得到線段(點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為).畫出線段;

(2)將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段.畫出線段;

(3)以為頂點(diǎn)的四邊形的面積是 個(gè)平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB與⊙O相切于點(diǎn)A,弦CD∥AB,E、F為圓上的兩點(diǎn),且∠CDE=∠ADF.若⊙O的半徑為,CD=4,則弦EF的長(zhǎng)為( )

A. 4 B. 2

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),點(diǎn)C在PB上,OC∥AP,CD⊥AP于點(diǎn)D.

(1)求證:OC=AD;

(2)若∠P=50°,⊙O的半徑為4,求四邊形AOCD的周長(zhǎng)(精確到0.1,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).

查看答案和解析>>

同步練習(xí)冊(cè)答案