【題目】如圖,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,F為EC的中點,連接AF.寫出AF與BD的數(shù)量關系和位置關系,并說明理由.
【答案】AF=BD,AF⊥BD,理由見解析.
【解析】
過點C作CG∥AE交直線AF于G,直線AF交BD于H,證明△CGF≌△EAF(AAS),得出CG=AE,AF=GF,得出AF=AG,證明△BAD≌△ACG(SAS),得出BD=AG,∠ABD=∠CAG,進而得出結(jié)論.
AF=BD,AF⊥BD,理由如下:
過點C作CG∥AE交直線AF于G,直線AF交BD于H,如圖所示:
則∠G=∠EAF,∠EAC+∠ACG=180°,
∵F為EC的中點,
∴CF=EF,
在△CGF和△EAF中,
,
∴△CGF≌△EAF(AAS),
∴CG=AE,AF=GF,
∴AF=AG,
∵△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,
∴AB=AC,AD=AE,∠EAC+∠BAD=360°-90°-90°=180°,∠CAG+∠BAH=90°,
∴AD=CG,∠BAD=∠ACG,
在△BAD和△ACG中,
,
∴△BAD≌△ACG(SAS),
∴BD=AG,∠ABD=∠CAG,
∴AF=BD,∠ABD+∠BAH=90°,
∴AF⊥BD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙上的兩條對稱軸、相交于中心點,將格點(頂點在小正方形的頂點上)分別作下列三種變換:
①先以點為中心順時針旋轉(zhuǎn),再向右平移格,最后向上平移格;
②先以點為中心作中心對稱圖形,再以點的對應點為中心逆時針旋轉(zhuǎn);
③先以直線為軸作軸對稱圖形,再向上平移格,最后以點的對應點為中心順時針旋轉(zhuǎn).
其中,能將變換成的種數(shù)是( )
A. 0種 B. 1種 C. 2種 D. 3種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
小凱遇到這樣一個問題:如圖①,在四邊形ABCD中,對角線AC,BD相交于點O,AC=4,BD=6,∠AOB=30°,求四邊形ABCD的面積.小凱發(fā)現(xiàn),分別過點A,C作直線BD的垂線,垂足分別為E,F(xiàn),設AO為m,通過計算△ABD與△BCD的面積和可以使問題得到解決(如圖②).請回答:
(1)△ABD的面積為________(用含m的式子表示);
(2)求四邊形ABCD的面積.
參考小凱思考問題的方法,解決問題:
如圖③,在四邊形ABCD中,對角線AC,BD相交于點O,AC=a,BD=b,∠AOB=α(0°<α<90°),則四邊形ABCD的面積為________(用含a,b,α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B,D分別在CF和EF上,CB=ED,CA=EA,∠C=∠E,連接AB,AD.
(1)求證:AB=AD;
(2)求證:BF=DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方程x2﹣3x+2=0的解是
(2)有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤A,B都被分成了3等份,并在每一份內(nèi)均標有數(shù)字,如圖所示,規(guī)則如下:①分別轉(zhuǎn)動轉(zhuǎn)盤A,B;②兩個轉(zhuǎn)盤停止后,觀察兩個指針所指份內(nèi)的數(shù)字(若指針停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).用列表法(或樹狀圖)分別求出“兩個指針所指的數(shù)字都是方程x2﹣3x+2=0的解”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊△ABC中,D是△ABC內(nèi)一點,且DA=DB,E為△ABC外一點,連接BE交AC于F,BE=BC,BD平分∠EBC,連接DE,CE,AD∥CE.
(1)求證:∠DAC=∠DBE;
(2)若AB=6,求△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程。
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com