精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,∠C=90°,AC=4cm,BC=5cm,點D在BC上,且CD=3cm.動點P、Q分別從A、C兩點同時出發(fā),其中點P以1cm/s的速度沿AC向終點C移動;點Q以cm/s的速度沿CB向終點B移動.過P作PE∥CB交AD于點E,設動點的運動時間為x秒.
(1)用含x的代數式表示EP;
(2)當Q在線段CD上運動幾秒時,四邊形PEDQ是平行四邊形;
(3)當Q在線段BD(不包括點B、點D)上運動時,求四邊形EPDQ面積的最大值.

【答案】分析:(1)此題有兩種解法:①由于PE∥CD,易證得△APE∽△ACD,根據相似三角形的對應邊的比相等,即可求得PE的長,②根據∠A的正切值求解.
(2)當Q在線段CD上運動時,0<x<2.4,若四邊形PEDQ是平行四邊形,則PE=DQ1,可用x表示出DQ1的長,聯立PE的表達式列方程求出x的值.
(3)當Q在線段BD上運動時,四邊形EPDQ是梯形,DQ、CP的長易求得,即可根據梯形的面積公式求得關于四邊形EPDQ的面積與x的函數關系式,根據函數的性質即可得到四邊形EPDQ的最大面積.
解答:解:(1)∵PE∥CB,
∴∠AEP=∠ADC,
又∵∠EAP=∠DAC,
∴△AEP∽△ADC,(2分)
=
=,(3分)
.(4分)

(2)由四邊形PEDQ1是平行四邊形,可得EP=DQ1.(5分)
x=3-x,所以x=1.5.(6分)
∵0<x<2.4(7分)
∴當Q在線段CD上運動1.5秒時,四邊形PEDQ是平行四邊形.(8分)

(3)S四邊形EPDQ2=x+x-3)•(4-x)(9分)
=-x2+x-6=-(x-2+,(10分)
又∵2.4<x<4,(12分)
∴當x=時,S取得最大值,最大值為.(13分)
點評:此題考查了相似三角形的判定和性質、平行四邊形的性質、梯形的面積以及二次函數最值的應用;在求圖形面積的最大或最小值時,通常轉化為二次函數的最值問題進行求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案