精英家教網 > 初中數學 > 題目詳情

【題目】甲乙兩地相距72千米,李磊騎自行車往返兩地一共用了7小時,已知他去時的平均速度比返回時的平均速度快,求李磊去時的平均速度是多少?

小蕓同學解法如下:

解:設李磊去時的平均速度是x千米/時,則返回時的平均速度是(1-)x千米/時,由題意得:+=7,

你認為小蕓同學的解法正確嗎?若正確,請寫出該方程所依據的等量關系,并完成剩下的步驟;若不正確,請說明原因,并完整地求解問題.

【答案】小蕓同學的解法不正確;理由見解析;

【解析】

要重點理解“已知他去時的平均速度比返回時的平均速度快”,把返回時的平均速度作為“1”,則去時的平均速度為“1+,不等同于去時的平均速度是千米/時,則返回時的平均速度是千米,可得出小蕓同學的解法不正確.正確做法是設返回時的平均速度為千米/時,則去時的平均速度為千米/時,根據時間=路程÷速度結合往返的時間,即可得出關于x的分式方程,解之并檢驗后即可得出結論.

小蕓同學的解法不正確.

理由為:去時的平均速度比返回時的平均速度快并不等于返回時的平均速度比去時的平均速度慢”.

正確的解法是:

設返回時的平均速度為千米/時,則去時的平均速度為千米/時,

根據題意得:

解得:

經檢驗,是原分式方程的解,

答:李磊去時的平均速度是24千米/時.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平行四邊形ABCD中,AD=13,BADADC的角平分線分別交BCEF,且EF=6,則平行四邊形的周長是____________________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形ABCD中,∠BAD=60°.

(1)如圖1,點E為線段AB的中點,連接DE,CE,若AB=4,求線段EC的長;

(2)如圖2,M為線段AC上一點(M不與A,C重合),以AM為邊,構造如圖所示等邊三角形AMN,線段MNAD交于點G,連接NC,DM,Q為線段NC的中點,連接DQ,MQ,求證:DM=2DQ.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經過A,B兩點.

(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,有若干個點按如下規(guī)律排列:(1,1),(21),(2,2),(31),(3,2),(3,3),, 則第 200 個點的橫坐標為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l∥AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABCD的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BCA′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( 。

A. ①②④ B. ①③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,二次函數y= x2﹣2x+1的圖象與一次函數y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標為(0,1),點B在第一象限內,點C是二次函數圖象的頂點,點M是一次函數y=kx+b(k≠0)的圖象與x軸的交點,過點B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD∥x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F.當PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+ BH的值最小,求點H的坐標和GH+ BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點A,點C的對應點分別為點A′,點C′;當△A′C′K是直角三角形時,求t的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了推動陽光體育運動的廣泛開展,引導學生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年的隨機抽取了部分學生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據相關信息,解答下列問題:

1)本次隨機抽樣的學生數是多少?A值是多少?

2)本次調查獲取的樣本數據的眾數和中位數各是多少?

3)根據樣本數據,若學校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.

查看答案和解析>>

同步練習冊答案