【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,3).延長CBx軸于點A1,作正方形A1B1C1C;延長C1B1x軸于點A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2017個正方形的面積為(

A. B. C. D.

【答案】B

【解析】

先求出正方形ABCD的邊長和面積,再求出正方形A1B1C1C的面積,得出規(guī)律,根據(jù)規(guī)律即可求出第2017個正方形的面積.

∵點A的坐標為(1,0),D的坐標為(0,3),

OA=1,OD=3,

∵四邊形ABCD是正方形,

,S正方形ABCD

,

∴正方形A1B1C1C的面積 …,n個正方形的面積為

∴第2017個正方形的面積為

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】你吃過拉面嗎?實際上在做拉面的過程中就滲透著數(shù)學知識:一定體積的面團做成拉面,面條的總長度y(m)四面條的粗細(橫截面積)S(mm2的反比例函數(shù),其圖象如圖所示.

(1)寫出yS的函數(shù)關(guān)系式;

(2)求當面條粗1.6 mm2時,面條的總長度是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠BCD90°,將四邊形ABCD沿AB方向平移得到四邊形A'B'C'D',BCC'D'相交于點E,若BC8,CE3,C'E2,則陰影部分的面積為( 。

A.12+2B.13C.2+6D.26

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,∠BAC50°∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)接于⊙O,圓心O是正方形的對稱中心,⊙O的面積為S1,正方形的面積為S2,則以圓心O為頂點,作∠MON=90°,將∠MONO點旋轉(zhuǎn),OM、ON分別與⊙O交于E、F,分別于正方形ABCD交于G、H,設(shè)由OE、OF、EF及正方形ABCD的邊圍成的圖形(陰影部分)的面積為S,那么:

(1)如圖①,當OM經(jīng)過點A時,S、S1、S2之間的關(guān)系(用S1、S2的代數(shù)式表示S)為   ;

(2)如圖②,當OMAB交于點G時,①中的結(jié)論還成立嗎?并說明理由;

(3)如圖③,MON旋轉(zhuǎn)到任意位置時,則①中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤元,每提高一個檔次,利潤每件增加元.

1)每件利潤為元時,此產(chǎn)品質(zhì)量在第幾檔次?

2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且),求出關(guān)于的函數(shù)關(guān)系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列方程中,一元二次方程的個數(shù)是( 。

①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2=0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是( 。

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三(1)班要從22女共4名同學中選人做晨會的升旗手.

1)若從這4人中隨機選1人,則所選的同學性別為男生的概率是   

2)若從這4人中隨機選2人,求這2名同學性別相同的概率.

查看答案和解析>>

同步練習冊答案