【題目】某地發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作.如圖,某探測(cè)隊(duì)在地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線(xiàn)與地面的夾角分別是25°和60°,且AB4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9tan25°≈0.5,1.7)

【答案】該生命跡象所在位置C的深度約為3米.

【解析】

CD⊥ABAB延長(zhǎng)線(xiàn)于D,設(shè)CD=x 米,通過(guò)解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用銳角三角函數(shù)的定義即可求出CD的值.

CD⊥ABAB延長(zhǎng)線(xiàn)于D,設(shè)CD=x 米.

Rt△ADC中,∠DAC=25°,

所以tan25°==0.5,

所以AD=2x.

Rt△BDC中,∠DBC=60°,

tan 60°==,

解得:x≈3米.

所以生命跡象所在位置C的深度約為3米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠ACB90°,CDABD,∠BAC的平分線(xiàn)分別交BC,CDE、F

1)試說(shuō)明△CEF是等腰三角形.

2)若點(diǎn)E恰好在線(xiàn)段AB的垂直平分線(xiàn)上,試說(shuō)明線(xiàn)段AC與線(xiàn)段AB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過(guò)點(diǎn)CCDx軸,交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。

1)求該拋物線(xiàn)的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示.線(xiàn)段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點(diǎn)測(cè)得D點(diǎn)的仰角α=45°,則乙建筑物高DC=______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DB=DC,BAC=BDC=120°,DMAC,EBA延長(zhǎng)線(xiàn)上的點(diǎn),∠BAC的角平分線(xiàn)交BCN,∠ABC的外角平分線(xiàn)交CA的延長(zhǎng)線(xiàn)于點(diǎn)P,連接PNABK,連接CK,則下列結(jié)論正確的是:①∠ABD=ACD;②DA平分∠EAC;③當(dāng)點(diǎn)ADB左側(cè)運(yùn)動(dòng)時(shí),為定值;④∠CKN=30° ( )

A.①③④B.②③④C.①②④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】向陽(yáng)中學(xué)數(shù)學(xué)興趣小組對(duì)關(guān)于x的方程(m+1+m2x1=0提出了下列問(wèn)題:

1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;

2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問(wèn)第二輪傳染后總共是否會(huì)有21人患病的情況發(fā)生,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖 1 所示, ABC AEF 為等邊三角形,點(diǎn) E ABC 內(nèi)部,且 E 到點(diǎn) A、B、C 的距離分別為 3、4、5,求∠AEB 的度數(shù).

2)如圖 2,在 ABC 中,∠CAB=90°,AB=AC,MN BC 上的兩點(diǎn),且∠MAN=45°,將ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到ACF.求證:MN= NC+BM(提示:旋轉(zhuǎn)前后的圖形全等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為等邊ABC中邊BC的中點(diǎn),在邊DA的延長(zhǎng)線(xiàn)上取一點(diǎn)E,以CE為邊、在CE的左下方作等邊CEF,連結(jié)AF.若AB4AF,則CF的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案