【題目】如圖是矩形的對角線分別是上的動點,的最小值為____________

【答案】

【解析】

作點B關(guān)于AC的對稱點B′,過點B′B′EBCE,交ACP,連接CB′ADF,連接BP,再根據(jù)矩形、軸對稱、等腰三角形的性質(zhì)得出FA=FC,那么在RtCDF中,運用勾股定理求出FC的長,然后由cosB′CE=cosCFD,求出CP的長.

如圖,作點B關(guān)于AC的對稱點B′,過點B′B′EBCE,交ACP,連接CB′ADF,連接BP,

∵四邊形ABCD是矩形,

ADBC,

∴∠BCA=FAC

∵點B關(guān)于AC的對稱點是B′,

∴∠FCA=BCA

∴∠FAC=FCA,

FA=FC

FA=x,則FC=x,FD=4-x

RtCDF中,∵FC2=FD2+CD2,

x2=4-x2+32,

x=,

cosB′CE=cosCFD

CEB′C=DFCF,

CE4=,

CE=,

B′E=,

BE+EF的最小值為=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下面所示各圖是在同一直角坐標系內(nèi),二次函數(shù)y+a+cx+c與一次函數(shù)yax+c的大致圖象.正確的(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓練小組,他們?nèi)酥g進行互相傳球練習,籃球從一個人手中隨機傳到另外一個人手中計作傳球一次,共連續(xù)傳球三次.

1)若開始時籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是  ;

2)若開始時籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BDAGF點.已知FG=2,則線段AE的長度為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線()軸交于兩點(的右側(cè)),與軸的正半軸交于點,對稱軸與軸交于點,作直線

(1)求點、、的坐標:

(2)當以為圓心的圓與軸和直線都相切時,求拋物線的解析式:

(3)(2)的條件下,如圖2軸負半軸上的一點,過點軸的平行線,與直線交于點,與拋物線交于點,連接,將沿翻折,的對應點為.在圖2中探究:是否存在點,使得恰好落在軸上?若存在,請求出的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的兩條邊的長是方程的兩根沿直線將矩形折疊,點落在第一象限的點處,軸于點

1)求點和點的坐標;

2)將直線以每秒個單位長度的速度沿軸向下平移,求直線掃過的三角形的面積關(guān)于運動的時間的函數(shù)關(guān)系式;

3)在(2)的條件下,在移動的直線上是否存在點,使以為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的對稱軸為,與軸的交點軸交于點

1)求拋物線的解析式;

2)點是直線下方拋物線上的一點,過點的平行線交拋物線于點(點在點右側(cè)),連結(jié)、,當的面積為面積的一半時,求點的坐標;

3)現(xiàn)將該拋物線沿射線的方向進行平移,平移后的拋物線與直線的交點為(點在點的下方),與軸的右側(cè)交點為,當相似,求出點的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于坐標平面內(nèi)的點,先將該點向右平移1個單位,再向上平移2個單位,這種點的運動稱為點的斜平移,如點P2,3)經(jīng)1次斜平移后的點的坐標為(3,5).已知點A的坐標為(1,0).如圖,點M是直線l上的一點,點A關(guān)于點M的對稱點為點B,點B關(guān)于直線l的對稱點為點C.若點B由點A經(jīng)n次斜平移后得到,且點C的坐標為(7,6),則點B的坐標為_____n的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別在邊上,,則線段的長為______

查看答案和解析>>

同步練習冊答案