【題目】如圖,ABCD中,AB=2,以點(diǎn)A為圓心,AB為半徑的圓交邊BC于點(diǎn)E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點(diǎn)E,求圖中陰影部分(扇形)的面積.
【答案】(1)見解析;(2)π.
【解析】試題分析:(1)由四邊形ABCD是平行四邊形,AB=AE,易證得四邊形AECD是等腰梯形,即可得AC=DE,然后由SSS,即可證得:△AED≌△DCA;
(2)由DE平分∠ADC且與⊙A相切于點(diǎn)E,可求得∠EAD的度數(shù),繼而求得∠BAE的度數(shù),然后由扇形的面積公式求得陰影部分(扇形)的面積.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∴四邊形AECD是梯形,
∵AB=AE,
∴AE=CD,
∴四邊形AECD是等腰梯形,
∴AC=DE,
在△AED和△DCA中,
,
∴△AED≌△DCA(SSS);
(2)解:∵DE平分∠ADC,
∴∠ADC=2∠ADE,
∵四邊形AECD是等腰梯形,
∴∠DAE=∠ADC=2∠ADE,
∵DE與⊙A相切于點(diǎn)E,
∴AE⊥DE,
即∠AED=90°,
∴∠ADE=30°,
∴∠DAE=60°,
∴∠DCE=∠AEC=180°﹣∠DAE=120°,
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠DCE=120°,
∴∠BAE=∠BAD﹣∠EAD=60°,
∴S陰影=×π×22=π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016云南省第23題)有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是;
第二個數(shù)是;
第三個數(shù)是;
…
對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于.
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個數(shù)為a,那么,,,哪個正確?
請你直接寫出正確的結(jié)論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于”;
(3)設(shè)M表示,,,…,,這2016個數(shù)的和,即,
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P,Q是直線l上的兩個動點(diǎn),且點(diǎn)P在第二象限,點(diǎn)Q在第四象限,∠POQ=135°.
(1)求△AOB的周長;
(2)設(shè)AQ=t>0,試用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);
(3)當(dāng)動點(diǎn)P,Q在直線l上運(yùn)動到使得△AOQ與△BPO的周長相等時,記tan∠AOQ=m,若過點(diǎn)A的二次函數(shù)y=ax2+bx+c同時滿足以下兩個條件:
①6a+3b+2c=0;
②當(dāng)m≤x≤m+2時,函數(shù)y的最大值等于,求二次項系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016云南省第17題)食品安全是關(guān)乎民生的重要問題,在食品中添加過量的添加劑對人體健康有害,但適量的添加劑對人體健康無害而且有利于食品的儲存和運(yùn)輸.為提高質(zhì)量,做進(jìn)一步研究,某飲料加工廠需生產(chǎn)A、B兩種飲料共100瓶,需加入同種添加劑270克,其中A飲料每瓶需加添加劑2克,B飲料每瓶需加添加劑3克,飲料加工廠生產(chǎn)了A、B兩種飲料各多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=-x+4.
(1)直接寫出直線與x軸、y軸的交點(diǎn)A、B的坐標(biāo);
(2)畫出圖象;
(3)求直線與坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】德國心理學(xué)家艾賓浩斯(H.Ebbinghaus)研究發(fā)現(xiàn),遺忘在學(xué)習(xí)之后立即開始,遺忘是有規(guī)律的.他用無意義音節(jié)作記憶材料,用節(jié)省法計算保持和遺忘的數(shù)量.通過測試,他得到了一些數(shù)據(jù),根據(jù)這些數(shù)據(jù)繪制出一條曲線,即著名的艾賓浩斯記憶遺忘曲線,如圖.該曲線對人類記憶認(rèn)知研究產(chǎn)生了重大影響.小梅觀察曲線,得出以下四個結(jié)論:
①記憶保持量是時間的函數(shù)
②遺忘的進(jìn)程是不均勻的,最初遺忘速度快,以后逐漸減慢
③學(xué)習(xí)后1小時,記憶保持量大約為40%
④遺忘曲線揭示出的規(guī)律提示我們學(xué)習(xí)后要及時復(fù)習(xí)
其中錯誤的結(jié)論是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的部分學(xué)生參加該市中學(xué)生知識競賽,小王同學(xué)統(tǒng)計了所有參賽同學(xué)的成績,并且根據(jù)學(xué)過的知識繪制了統(tǒng)計圖.請根據(jù)圖中提供的信息回答問題:
(1)該校參加本競賽的同學(xué)共_________人;
(2)若成績在6分以上的(含6分)的同學(xué)獲獎,則該校參賽同學(xué)的獲獎率為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2-2x-m=0沒有實(shí)數(shù)根,試判斷關(guān)于x的方程x2+2mx+m(m+1)=0的根的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+2ax+1與x軸僅有一個公共點(diǎn)A,經(jīng)過點(diǎn)A的直線交該拋物線于點(diǎn)B,交y軸于點(diǎn)C,且點(diǎn)C是線段AB的中點(diǎn).
(1)求這條拋物線對應(yīng)的函數(shù)解析式;
(2)求直線AB對應(yīng)的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com