【題目】已知:在RtABC中,∠B=90°,∠ACB=30°,點(diǎn)DBC邊上一動(dòng)點(diǎn),以AD為邊,在AD的右側(cè)作等邊三角形ADE

1)當(dāng)AD平分∠BAC時(shí),如圖1,四邊形ADCE    形;

2)過EEFACF,如圖2,求證:FAC的中點(diǎn);

3)若AB=2,

當(dāng)DBC的中點(diǎn)時(shí),過點(diǎn)EEGBCG,如圖3,求EG的長(zhǎng);

點(diǎn)DB點(diǎn)運(yùn)動(dòng)到C點(diǎn),則點(diǎn)E所經(jīng)過路徑長(zhǎng)為    (直接寫出結(jié)果)

【答案】1)菱形;(2)證明見解析;(3EG;②2

【解析】

1)根據(jù)平行四邊形的判定定理得到四邊形ADCE為平行四邊形,證明AD=AE,根據(jù)菱形的判定定理證明結(jié)論;

2)證明△BAD≌△FAE,根據(jù)全等三角形的性質(zhì)得到AB=AF,根據(jù)直角三角形的性質(zhì)得到AC=2AB,證明結(jié)論;

3)①作EFACF,連接EC,根據(jù)勾股定理求出BC,根據(jù)等腰三角形的性質(zhì)求出CG,根據(jù)勾股定理計(jì)算,得到答案; ②根據(jù)線段垂直平分線的判定定理得到E'E'垂直平分AC,證明△E'AE'≌△BAC,得到E'E'=BC=

解:(1)在RtABC中,∠B=90°,∠ACB=30°,

∴∠BAC=60°.

AD平分∠BAC

∴∠BAD=DAC=30°.

∵△ADE為等邊三角形,

∴∠DAE=60°,

∴∠EAC=30°,

∴∠EAC=ACB,∠DAC=ACB,

AEDC,AD=DC

AE=AD,∴AE=CD,

∴四邊形ADCE為平行四邊形.

AD=AE,

∴平行四邊形ADCE為菱形.

故答案為:菱形;

2

在△BAD和△FAE中,

,

∴△BAD≌△FAE(AAS)

AB=AF,

RtABC中,∠B=90°,∠ACB=30°,

AC=2AB,

AC=2AF,

FAC的中點(diǎn);

3如圖3,作EFACF,連接EC,

RtABC中,∠B=90°,∠ACB=30°,

AC=2AB=4

BC2,

DBC的中點(diǎn),

BDBC,

AD,

AF=FC,EFAC

EC=AE=AD,

EC=EA=ED,EGDC,

CGCD,

EG;

如圖4,當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),點(diǎn)EE'處,點(diǎn)E'AC中點(diǎn);

當(dāng)點(diǎn)D與點(diǎn)C重合時(shí),點(diǎn)EE'處,其中△ACE'是等邊三角形,

由(1)得:AE=CE,∴點(diǎn)E始終落在線段AC的垂直平分線上,

E'E'垂直平分AC,

∴點(diǎn)E的運(yùn)動(dòng)路徑是從AC的中點(diǎn)E',沿著AC垂直平分線運(yùn)動(dòng)到E'處,

在△E'AE'和△BAC中,

,

∴△E'AE'≌△BAC(AAS),

E'E'=BC=2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的頂點(diǎn),點(diǎn),反比例函數(shù)

(1)如圖1,雙曲線經(jīng)過點(diǎn)時(shí)求反比例函數(shù)的關(guān)系式;

 

(2)如圖2,正方形向下平移得到正方形軸上,反比例函數(shù)的圖象分別交正方形的邊、邊于點(diǎn)

①求的面積;

②如圖3,軸上一點(diǎn),是否存在是等腰三角形,若存在直接寫出點(diǎn)坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(4,0),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)Dx軸的垂線,垂足為E,連接BD

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)點(diǎn)F是拋物線上的動(dòng)點(diǎn),當(dāng)∠FBA=2BDE時(shí),求點(diǎn)F的坐標(biāo);

(3)若點(diǎn)Px軸上方拋物線上的動(dòng)點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)GH恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的視線角”α約為20°,而當(dāng)手指接觸鍵盤時(shí),肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡(jiǎn)化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離AB的長(zhǎng);

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請(qǐng)判斷此時(shí)β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個(gè)位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是BC,AD邊上的點(diǎn),且AE=CF,若ACEF,試判斷四邊形AECF的形狀,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰三角形ABC中,ABAC8,BC14.如圖②,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖③,將ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,連結(jié)EB,交OD于點(diǎn)F

1)求證:ODBE;

2)若DEAB10,求AE的長(zhǎng);

3)若CDE的面積是OBF面積的,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形對(duì)角線交于點(diǎn)邊分別為邊長(zhǎng)作正方形正方形,連接

1)求證:;

2)若,請(qǐng)求出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+mm為常數(shù))的圖象與x軸交于A(﹣3,0),與y軸交于點(diǎn)C.以直線x=﹣1為對(duì)稱軸的拋物線yax2+bx+ca,b,c為常數(shù),且a0)經(jīng)過A,C兩點(diǎn),與x軸正半軸交于點(diǎn)B
1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;

2P為線段AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)PC、A不重合)過Px軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)D,連接CDAD,點(diǎn)P的橫坐標(biāo)為n,當(dāng)n為多少時(shí),CDA的面積最大,最大面積為多少?

3)在對(duì)稱軸上是否存在一點(diǎn)E,使∠ACB=∠AEB?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案