【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于點(diǎn)E,過點(diǎn)C作CF∥AE交AB于點(diǎn)F. 求證:CF平分∠BCD.

【答案】解:∵∠B=∠D=90°, ∴∠DAB+∠BCD=180°,
∵EA∥CF,
∴∠3=∠1,
∵∠3+∠4=90°,
∴∠1+∠4=90°,
∴∠2+∠5=90°,
∵AE平分∠BAD交CD于點(diǎn)E,
∴∠4=∠6,
∴∠4=∠5,
∴∠1=∠2,
∴CF平分∠BCD.

【解析】根據(jù)四邊形的內(nèi)角和得到∠DAB+∠BCD=180°,根據(jù)平行線的性質(zhì)得到∠3=∠1,等量代換得到∠2+∠5=90°,根據(jù)角平分線的定義得到∠4=∠6,等量代換得到∠1=∠2,于是得到結(jié)論.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì)和多邊形內(nèi)角與外角,需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若將半徑為6cm的圓形紙片剪去三分之一,剩下的部分圍成一個(gè)圓錐的側(cè)面,則圍成圓錐的全面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,

(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用計(jì)算器求sin20°+tan54°33′的結(jié)果等于(結(jié)果精確到0.01)( 。
A.2.25
B.1.55
C.1.73
D.1.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的外心是指什么線的交點(diǎn)?( 。

A. 三邊中線B. 三內(nèi)角的平分線

C. 三邊高線D. 三邊垂直平分線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果10b=n,那么b為n的勞格數(shù),記為b=d(n),由定義可知:10b=n與b=d(n)所表示的b、n兩個(gè)量之間的同一關(guān)系.例如:101=10,d(10)=1
(1)根據(jù)勞格數(shù)的定義,填空:d(102)=
(2)勞格數(shù)有如下運(yùn)算性質(zhì):若m、n為正數(shù),則d(mn)=d(m)+d(n),d( )=d(m)﹣d(n). 根據(jù)運(yùn)算性質(zhì),填空: =(a為正數(shù)),若d(2)=0.3010,則d(16)= , d(5)= ,
(3)如表中與數(shù)x對(duì)應(yīng)的勞格數(shù)d(x)有且只有兩個(gè)是錯(cuò)誤的

x

1.5

3

5

6

8

9

18

27

d(x)

3a﹣b+c

2a+b

a﹣c

1+a+b+c

3﹣3a+3c

4a+2b

3﹣b﹣2c

6a+3b

請(qǐng)找出錯(cuò)誤的勞格數(shù),并表格中直接改正.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上海世博會(huì)的某紀(jì)念品原價(jià)168元,連續(xù)兩次降價(jià)a%后售價(jià)為128元,下面所列方程中正確的是

A. 168(1a%)2128 B. 168(1a%)2128

C. 168(12a%)128 D. 168(1a2%)128

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡(jiǎn)(a23的結(jié)果為(
A.a5
B.a6
C.a8
D.a9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列說法正確的是(
A.若AB∥DC,則∠1=∠2
B.若AD∥BC,則∠3=∠4
C.若∠1=∠2,則AB∥DC
D.若∠2+∠3+∠A=180°,則AB∥DC

查看答案和解析>>

同步練習(xí)冊(cè)答案