【題目】如圖,已知,,,是射線上的一個動點(與點不重合),是線段上的一個動點(與點不重合),連接,過點的垂線,交射線于點連接.設(shè)

(1)時,求關(guān)于的函數(shù)關(guān)系式,并寫出它的定義域;

(2)(1)的條件下,取線段的中點,連接,,的長;

(3)如果動點在運動時,始終滿足條件那么請?zhí)骄浚?/span>的周長是否隨著動點的運動而發(fā)生變化?請說明理由。

【答案】1;(2;(3的周長不變,理由見解析

【解析】

1)由△AED∽△BCE,得出其對應邊成比例,進而可得出xy的關(guān)系式;
2)可過D點作DHBNH,求出BC的值,即y的值,進而可求解x的值;
3)△BCE的周長為一定值,由于題中滿足條件AD+DE=AB,且△AED∽△BCE,由于相似三角形的周長比即為其對應邊的比,所以可得其周長不變.

(1)由題中條件可得△AED∽△BCE,

,

∵AE=x,BC=y,AB=4,AD=1

∴BE=4x,

;

(2)∵DE⊥EC,

∴∠DEC=90°,

∵DF=FC,

∴DC=2EF=2×2.5=5

如圖所示,過D點作DH⊥BNH,則DH=AB=4,

∴Rt△DHC, ,

∴BC=BH+HC=1+3=4,即y=4

解得:,

∴AE=2;

(3)△BCE的周長不變. 理由如下:

,BE=4x,

設(shè)AD=m,則DE=4m,

∵∠A=90

∴DE2=AE2+AD2,(4m)2=x2+m2

,

(1)知:△AED△BCE

∴△BCE的周長不變.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,ACBD交于點O, NAO的中點,點MBC邊上,且BM=3, P為對角線BD上一點,當對角線BD平分∠NPM時,PM-PN值為( )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線Cyx2+2x3.

拋物線

頂點坐標

x軸交點坐標

y軸交點坐標

拋物線Cyx2+2x3

A(_____)

B(_____)

(10)

(0,﹣3)

變換后的拋物線C1

______

______

______

______

(1)補全表中AB兩點的坐標,并在所給的平面直角坐標系中畫出拋物線C.

(2)將拋物線C上每一點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標變?yōu)樵瓉淼?/span>,可證明得到的曲線仍是拋物線,(記為C1),求拋物線C1對應的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要建一個如圖所示的面積為300m2的長方形圍欄,圍欄總長50m,一邊靠墻(墻長25m).

(1)求圍欄的長和寬;

(2)能否圍成面積為400m2的長方形圍欄?如果能,求出該長方形的長和寬,如果不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.

1)畫出位似中心點O;

2)直接寫出△ABC△A′B′C′的位似比_______

3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A′B′C′關(guān)于點O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標._______;______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線.

1)該拋物線的對稱軸是________.

2)該拋物線與軸交于點,點軸交于點,點的坐標為,若此拋物線的對稱軸上的點滿足,則點的縱坐標的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高爾基說:書,是人類進步的階梯.閱讀可以豐富知識、拓展視野、充實生活等諸多益處.為了解學生的課外閱讀情況,某校隨機抽查了部分學生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書數(shù)的數(shù)據(jù).

1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊數(shù)的眾數(shù)和中位數(shù);

2)根據(jù)隨機抽查的這個結(jié)果,請估計該校1200名學生中課外閱讀5冊書的學生人數(shù);

3)若學校又補查了部分同學的課外閱讀情況,得知這部分同學中課外閱讀最少的是6冊,將補查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補查了多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結(jié)論有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的四個頂點坐標分別為A(-2,4),B(-2,-2),C(4,-2)D(4,4).

(1)填空:正方形的面積為_______;當雙曲線(k≠0)與正方形ABCD有四個交點時,k的取值范圍是_______.

(2)已知拋物線L(a>0)頂點P在邊BC上,與邊AB,DC分別相交于點E,F,過點B的雙曲線(k≠0)與邊DC交于點N.

①點Q(m,-m2-2m+3)是平面內(nèi)一動點,在拋物線L的運動過程中,點Qm運動,分別求運動過程中點Q在最高位置和最低位置時的坐標.

②當點F在點N下方,AE=NF,點P不與B,C兩點重合時,求的值.

③求證:拋物線L與直線的交點M始終位于軸下方.

查看答案和解析>>

同步練習冊答案