精英家教網 > 初中數學 > 題目詳情

【題目】利用直尺和圓規(guī)作一個角等于已知角的作法如下:

①以點O為圓心,以任意長為半徑畫弧,分別交OA、OB于點D、C;

②作射線O′B′,以點O′為圓心,以   長為半徑畫弧,交O′B′于點C′;

③以點C′為圓心,以   長為半徑畫弧,兩弧交于點D′;

④過點D′作射線O′A′,∴∠A′O′B′為所求.

(1)請將上面的作法補充完整;

(2)OCD≌△O′C′D′的依據是   

【答案】(1)OCOD;CD;(2)SSS.

【解析】

1)直接利用基本作圖方法進而填空得出答案;

2)利用全等三角形的判定方法得出答案.

解:(1)①以點O為圓心,以任意長為半徑畫弧,分別交OA、OB于點D、C;

②作射線O′B′,以點O′為圓心,以 OCOD長為半徑畫弧,交O′B′于點C′;

③以點C′為圓心,以 CD長為半徑畫弧,兩弧交于點D′;

④過點D′作射線O′A′,∴∠A′O′B′為所求.

故答案為:OCOD;CD;

(2)由題意可得:在OCDO′C′D′

∴△OCD≌△O′C′D′(SSS),

OCD≌△O′C′D′的依據是SSS.

故答案為:SSS.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側),與y軸交于點C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(包括△OBC的邊界),求h的取值范圍;
(3)設點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,△ABC頂點的橫、縱坐標都是整數.若將△ABC以某點為旋轉中心,順時針旋轉90°得到△DEF,則旋轉中心的坐標是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩條平行直線上各有個點,用這個點按如下規(guī)則連接線段:

①平行線之間的點在連線段時,可以有共同的端點,但不能有其它交點;

②符合①要求的線段必須全部畫出.

展示了當時的情況,此時圖中三角形的個數為;圖展示了當時的一種情況,此時圖中三角形的個數為.試回答下列問題:

時,請在圖中畫出使三角形個數最少的圖形,此時圖中三角形的個數是________

試猜想當有對點時,按上述規(guī)則畫出的圖形中,最少有________個三角形;

時,按上述規(guī)則畫出的圖形中,最少有________個三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當DE∥BC時,有DBEC.(填“>”,“<”或“=”)

(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點A順時針旋轉α(0°<α<180°)到圖2位置,則(1)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.

(3)拓展運用:如圖3,P是等腰直角三角形ABC內一點,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個直角三角形的兩邊的長是方程x2﹣7x+12=0的兩個根,則此直角三角形的斜邊中線長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點O為旋轉中心旋轉90°,請畫出旋轉后的△A′B′C′;
(2)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知RtABC中,∠ACB=90°,CA=CB,有一個圓心角為45°,半徑長等于CA的扇形CEF繞點C旋轉,直線CE、CF分別與直線AB交于點M、N.

(1)如圖①,當AM=BN時,將△ACM沿CM折疊,點A落在弧EF的中點P處,再將△BCN沿CN折疊,點B也恰好落在點P處,此時,PM=AM,PN=BN,PMN的形狀是   .線段AM、BN、MN之間的數量關系是  

(2)如圖②,當扇形CEF繞點C在∠ACB內部旋轉時,線段MN、AM、BN之間的數量關系是   .試證明你的猜想;

(3)當扇形CEF繞點C旋轉至圖③的位置時,線段MN、AM、BN之間的數量關系是   .(不要求證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線y=x2+bx+c經過A、C兩點.

(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P,Q分別向x軸作垂線,垂足為點D,E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.

查看答案和解析>>

同步練習冊答案