十進制中,右邊的數碼比左邊的數碼大的數叫做上升數,如134,258.那么三位數中的上升數有________個;在三位上升數中,3的倍數有________個.
84 30
分析:分類討論:百位上的數字為1時,上升數的個數=7+6+5+4+3+2+1,百位上的數字為2時,上升數的個數=6+5+4+3+2+1,依此類推可得到三位數中的上升數的個數=1+

+

+

+…+

=84;然后在84個數中找出三位數的三個數的和能被三整除即可得到三位數為3的倍數的個數.
解答:百位上的數字為1時,上升數的個數=7+6+5+4+3+2+1=

,
百位上的數字為2時,上升數的個數=6+5+4+3+2+1=

百位上的數字為3時,上升數的個數=5+4+3+2+1=

,
…
百位上的數字為7時,上升數的個數=1,
所以三位數中的上升數的個數=1+

+

+

+…+

=84;
從上面給的數中找出三位數的三個數的和能被三整除,123、126、129、…,789,共有30個.
故答案為84、30.
點評:本題考查了規(guī)律型:數字的變化類:探究題是近幾年中考命題的亮點,尤其是與數列有關的命題更是層出不窮,形式多樣,它要求在已有知識的基礎上去探究,觀察思考發(fā)現規(guī)律.