【題目】如圖,已知等邊△OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過(guò)B1作B1A2∥OA1交雙曲線于點(diǎn)A2,過(guò)A2作A2B2∥A1B1交x軸于點(diǎn)B2,得到第二個(gè)等邊△B1A2B2;過(guò)B2作B2A3∥B1A2交雙曲線于點(diǎn)A3,過(guò)A3作A3B3∥A2B2交x軸于點(diǎn)B3,得到第三個(gè)等邊△B2A3B3;以此類(lèi)推,…,則點(diǎn)B6的坐標(biāo)為_____.
【答案】(2,0).
【解析】根據(jù)等邊三角形的性質(zhì)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別求出B2、B3、B4的坐標(biāo),得出規(guī)律,進(jìn)而求出點(diǎn)B6的坐標(biāo).
如圖,作A2C⊥x軸于點(diǎn)C,設(shè)B1C=a,則A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵點(diǎn)A2在雙曲線y=(x>0)上,
∴(2+a)a=,
解得a=﹣1,或a=﹣﹣1(舍去),
∴OB2=OB1+2B1C=2+2﹣2=2,
∴點(diǎn)B2的坐標(biāo)為(2,0);
作A3D⊥x軸于點(diǎn)D,設(shè)B2D=b,則A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵點(diǎn)A3在雙曲線y=(x>0)上,
∴(2+b)b=,
解得b=﹣+,或b=﹣
∴OB3=OB2+2B2D=2﹣2+2=2,
∴點(diǎn)B3的坐標(biāo)為(2,0);
同理可得點(diǎn)B4的坐標(biāo)為(2,0)即(4,0);
…,
∴點(diǎn)Bn的坐標(biāo)為(2,0),
∴點(diǎn)B6的坐標(biāo)為(2,0),
故答案為:(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求證:BD⊥CB;
(2)求四邊形 ABCD 的面積;
(3)如圖 2,以 A 為坐標(biāo)原點(diǎn),以 AB、AD所在直線為 x軸、y軸建立直角坐標(biāo)系,
點(diǎn)P在y軸上,若 S△PBD=S四邊形ABCD,求 P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課堂上,老師提出問(wèn)題:如圖,如何在該圖形中數(shù)出黑色正方形的個(gè)數(shù),以下是兩位同學(xué)的做法:
(1)甲同學(xué)的做法為:
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
……則在第個(gè)圖形中,黑色正方形的個(gè)數(shù)共有 (無(wú)需化簡(jiǎn))
(2)乙同學(xué)的做法為:
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
當(dāng)時(shí),黑色正方形的個(gè)數(shù)共有
……則在第個(gè)圖形中,黑色正方形的個(gè)數(shù)共有 (無(wú)需化簡(jiǎn))
(3)數(shù)學(xué)老師及時(shí)肯定了兩位同學(xué)的做法,從而可以得到等式
(4)請(qǐng)利用學(xué)習(xí)過(guò)的知識(shí)驗(yàn)證(3)問(wèn)中的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長(zhǎng)是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1.在△ABC中,∠ACB=90°,點(diǎn)P為△ABC內(nèi)一點(diǎn).
(1)連接PB、PC,將△BCP沿射線CA方向平移,得到△DAE,點(diǎn)B、C、P的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、A、E,連接CE.
①依題意,請(qǐng)?jiān)趫D2中補(bǔ)全圖形;
②如果BP⊥CE,AB+BP=9,CE=,求AB的長(zhǎng).
(2)如圖3,以點(diǎn)A為旋轉(zhuǎn)中心,將△ABP順時(shí)針旋轉(zhuǎn)60°得到△AMN,連接PA、PB、PC,當(dāng)AC=4,AB=8時(shí),根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司購(gòu)買(mǎi)了一批A、B型芯片,其中A型芯片的單價(jià)比B型芯片的單價(jià)少9元,已知該公司用3120元購(gòu)買(mǎi)A型芯片的條數(shù)與用4200元購(gòu)買(mǎi)B型芯片的條數(shù)相等.
(1)求該公司購(gòu)買(mǎi)的A、B型芯片的單價(jià)各是多少元?
(2)若兩種芯片共購(gòu)買(mǎi)了200條,且購(gòu)買(mǎi)的總費(fèi)用為6280元,求購(gòu)買(mǎi)了多少條A型芯片?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫(xiě)出△ABC各點(diǎn)的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫(huà)出△ABC變化位置。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“數(shù)形結(jié)合"是一種重要的數(shù)學(xué)思想,觀察下面的圖形和算式.
解答下列問(wèn)題:
(1)試猜想1+3+5+7+9+…+19=______=( );
(2)試猜想,當(dāng)n是正整數(shù)時(shí),1+3+5+7+9+…+(2n-1)= ;
(3)請(qǐng)用(2)中得到的規(guī)律計(jì)算:19+21+23+25+27+…+99.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少?lài)嵎柿希?/span>
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車(chē)型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com