【題目】如圖,等邊三角形中,,點(diǎn)D是延長(zhǎng)線上一點(diǎn),且,點(diǎn)E在直線上,當(dāng)時(shí),的長(zhǎng)為_____.
【答案】2或.
【解析】
分①在線段AC上,②在線段AC的延長(zhǎng)線上兩種情況討論.對(duì)于①作EF//AB與BC相交于F,證明△DFE∽△ABD,利用相似三角形對(duì)應(yīng)邊相等可求得EC,即也可求得AE;對(duì)于②作EF//AB與BC的延長(zhǎng)線交于F,證明△DCE∽△ABD,利用相似三角形對(duì)應(yīng)邊相等可求得EC,即也可求得AE.
解:E點(diǎn)的位置有兩種可能,①在線段AC上,②在線段AC的延長(zhǎng)線上. E不可能在CA的延長(zhǎng)線上(因?yàn)槿?/span>E在CA的延長(zhǎng)線上由①可知不可能等于).
①若E在線段AC上,如圖作EF//AB與BC相交于F,
∵為等邊三角形,,
∴AC=BC=AB=3,,
∴∠ABD=120°,
∵EF//AB,
∴,
∴△EFC為等邊三角形,∠EFD=120°,設(shè)EF=FC=EC=x.
∵,∠ABD=∠EFD=120°,
∴△DFE∽△ABD,
∴
∵,
∴
∴,解得
∴EF=FC=EC=1,
∴AE=AC-EC=3-1=2;
②若E點(diǎn)在線段AC的延長(zhǎng)線上,作EF//AB與BC的延長(zhǎng)線交于F.
與①同理可證△EFC為等邊三角形,∠ECD=120°,設(shè)EF=FC=EC=x.
∵,∠ABD=∠ECD=120°,
∴△DCE∽△ABD,
∴,
∵,
∴BD=BC+BD=4,
∴,解得,
∴EF=FC=EC=,
,
故答案為:2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.
(1)求證:△ABC是等腰三角形;
(2)當(dāng)OA=4,AB=6,求邊BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對(duì)折,得到折痕MN;沿著CM折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)為E,ME與BC的交點(diǎn)為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時(shí)點(diǎn)B的對(duì)應(yīng)點(diǎn)為G.下列結(jié)論:
①△CMP是直角三角形;
②點(diǎn)C、E、G不在同一條直線上;
③PC=MP;
④BP=AB;
⑤PG=2EF.
其中一定成立的是_____(把所有正確結(jié)論的序號(hào)填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為( 。
A. (﹣) B. (﹣) C. (﹣) D. (﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中,.
(1)若直線經(jīng)過(guò)、兩點(diǎn),求直線和拋物線的解析式;
(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明調(diào)查了本校九年級(jí)300名學(xué)生到校的方式,根據(jù)調(diào)査結(jié)果繪制出統(tǒng)計(jì)圖的一部分如圖:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中表示“步行”的扇形圓心角的度數(shù);
(3)請(qǐng)估計(jì)在全校1200名學(xué)生中乘公交的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E,點(diǎn)F分別是邊BC,邊CD上的動(dòng)點(diǎn),且BE=CF,AE與BF相交于點(diǎn)P.若點(diǎn)M為邊BC的中點(diǎn),點(diǎn)N為邊CD上任意一點(diǎn),則MN+PN的最小值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),與反比例函數(shù)的圖象在第一象限交于點(diǎn),連接,且.則不等式的解集為( )
A.或B.或C.或D.-3<x<0或x>3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點(diǎn)E,DB與CE相交于點(diǎn)O,
(1)求證:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com