【題目】如圖,將矩形紙片沿折疊,使點(diǎn)與點(diǎn)重合,再將沿折疊,使點(diǎn)恰好落在上的點(diǎn)處.若,則的長(zhǎng)為_____

【答案】

【解析】

根據(jù)折疊的性質(zhì)可以證明DEM≌△DCN,得DM=DN,再根據(jù)折疊可得∠BNM=DNM=DNC,可證明DMN是等邊三角形,再根據(jù)等邊三角形的性質(zhì)即可求出AD的長(zhǎng).

由折疊可知:

點(diǎn)B與點(diǎn)D重合,

∴∠EDN=90°,

∵四邊形ABCD是矩形,

∴∠ADC=90°,

∴∠EDM+MDN=CDN+MDN,

∴∠EDM=CDN

∵∠E=C=90°

DE=DC

∴△DEM≌△DCNASA),

DM=DN,

由折疊,

BNM=DNM,∠DNC=DNM,

∴∠BNM=DNM=DNC=×180°=60°,

∴△DMN是等邊三角形,

DM=MN=5,

點(diǎn)C恰好落在MN上的點(diǎn)F處可知:

DFN=90°,即DFMN,

MF=NF=MN=

CN=ME=AM=,

AD=AM+DM=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn),經(jīng)過(guò)點(diǎn),與軸分別交于,兩點(diǎn).

1)求該拋物線的解析式;

2)如圖1,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且在直線的下方,過(guò)點(diǎn)軸的平行線與直線交于點(diǎn),當(dāng)取最大值時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,軸交軸于點(diǎn),點(diǎn)是拋物線上,之間的一個(gè)動(dòng)點(diǎn),直線,分別交于,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí).

①直接寫出的值;

②直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過(guò)的中點(diǎn)時(shí),的長(zhǎng)為_ ;

(2)當(dāng)平分時(shí),判斷的位置關(guān)系.說(shuō)明理由,并求出的長(zhǎng);

3)如圖2,當(dāng)交于兩點(diǎn),且時(shí),求點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為4,EF、GH分別是AB、BCCD、DA上的點(diǎn),且AEBFCGDH.設(shè)A、E兩點(diǎn)間的距離為x,四邊形EFGH的面積為y,則yx的函數(shù)圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),過(guò)⊙O上一點(diǎn)DDFABF,交⊙O于點(diǎn)E,點(diǎn)MBE的中點(diǎn),AB4,∠E=∠C30°

1)求證:CD是⊙O的切線;

2)求DM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境

數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們以“三角形的旋轉(zhuǎn)”為主題開展數(shù)學(xué)活動(dòng),是兩個(gè)全等的直角三角形紙片,其中,,

解決問(wèn)題

1)如圖①,智慧小組將繞點(diǎn)順時(shí)針旋轉(zhuǎn),發(fā)現(xiàn)當(dāng)點(diǎn)恰好落在邊上時(shí),,請(qǐng)你幫他們證明這個(gè)結(jié)論;

2)縝密小組在智慧小組的基礎(chǔ)上繼續(xù)探究,連接,當(dāng)C繞點(diǎn)繼續(xù)旋轉(zhuǎn)到如圖②所示的位置時(shí),他們提出,請(qǐng)你幫他們驗(yàn)證這一結(jié)論是否正確,并說(shuō)明理由;

探索發(fā)現(xiàn)

3)如圖③,勤奮小組在前兩個(gè)小組的啟發(fā)下,繼續(xù)旋轉(zhuǎn),當(dāng)三點(diǎn)共線時(shí),求的長(zhǎng);

4)在圖①的基礎(chǔ)上,寫出一個(gè)邊長(zhǎng)比為的三角形(可添加字母).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.

求出每天的銷售利潤(rùn)與銷售單價(jià)之間的函數(shù)關(guān)系式;

求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),以點(diǎn)為圓心,為半徑作,連接.

(1)當(dāng)經(jīng)過(guò)的中點(diǎn)時(shí),的長(zhǎng)為_ ;

(2)當(dāng)平分時(shí),判斷的位置關(guān)系.說(shuō)明理由,并求出的長(zhǎng);

3)如圖2,當(dāng)交于兩點(diǎn),且時(shí),求點(diǎn)的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)泰山文化,某校舉辦了泰山詩(shī)文大賽活動(dòng),從中隨機(jī)抽取部分學(xué)生的比賽成績(jī),根據(jù)成績(jī)(成績(jī)都高于50分),繪制了如下的統(tǒng)計(jì)圖表(不完整):

組別

分?jǐn)?shù)

人數(shù)

1

90x≤100

8

2

80x≤90

a

3

70x≤80

10

4

60x≤70

b

5

50x≤60

3

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

1)求出a,b的值;

2)計(jì)算扇形統(tǒng)計(jì)圖中5所在扇形圓心角的度數(shù);

3)若該校共有1800名學(xué)生,那么成績(jī)高于80分的共有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案