如圖,拋物線交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。
(1)y=2x﹣8
(2)①當(dāng)2m﹣3<0,即0<m<時, 則MN﹣PQ<0,即MN<PQ;
②當(dāng)2m﹣3=0,即m=時, 則MN﹣PQ=0,即MN=PQ;
③當(dāng)2m﹣3>0即<m<3時,則MN﹣PQ>0,即MN>PQ。
解析分析:(1)利用二次函數(shù)解析式,求出A、B兩點的坐標(biāo),再利用待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)M的橫坐標(biāo)和直尺的寬度,求出P的橫坐標(biāo),再代入直線和拋物線解析式,求出MN、PQ的長度表達式,再比較即可。
解:(1)當(dāng)x=0時,y=﹣8;
當(dāng)y=0時,x2﹣2x﹣8=0,解得,x1=4,x2=﹣8。
∴A(0,﹣8),B(4,0)。
設(shè)一次函數(shù)解析式為y=kx+b,
將A(0,﹣8),B(4,0)分別代入解析式得,解得,。
∴一次函數(shù)解析式為y=2x﹣8。
(2)∵M點橫坐標(biāo)為m,則P點橫坐標(biāo)為(m+1)。
∴;
。
∴。
∵0<m<3,
∴①當(dāng)2m﹣3<0,即0<m<時, 則MN﹣PQ<0,即MN<PQ;
②當(dāng)2m﹣3=0,即m=時, 則MN﹣PQ=0,即MN=PQ;
③當(dāng)2m﹣3>0即<m<3時,則MN﹣PQ>0,即MN>PQ。
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,平面直角坐標(biāo)系中,以點C(2,)為圓心,以2為半徑的圓與x軸交于A,B兩點.
(1)求A,B兩點的坐標(biāo);
(2)若二次函數(shù)y=x2+bx+c的圖象經(jīng)過點A,B,試確定此二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
2011年11月28日至12月9日,聯(lián)合國氣候變化框架公約第17次締約方會議在南非德班召開,大會通過了“德班一攬子決議”(DurbanPackageOutcome),建立德班增強行動平臺特設(shè)工作組,決定實施《京都議定書》第二承諾期并啟動綠色氣候基金,中國的積極態(tài)度贏得與會各國的尊重.
在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟,全面實現(xiàn)低碳生活逐漸成為人們的共識.某企業(yè)采用技術(shù)革新,節(jié)能減排.從去年1至6月,該企業(yè)二氧化碳排放量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 |
二氧化碳排放量y1(噸) | 600 | 300 | 200 | 150 | 120 | 100 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線與拋物線相交于A,B兩點,與x軸正半軸相交于點D,與y軸相交于點C,設(shè)△OCD的面積為S,且。
(1)求b的值;
(2)求證:點在反比例函數(shù)的圖象上;
(3)求證:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某高中學(xué)校為高一新生設(shè)計的學(xué)生單人桌的抽屜部分是長方體形.其中,抽屜底面周長為180cm,高為20cm.請通過計算說明,當(dāng)?shù)酌娴膶抶為何值時,抽屜的體積y最大?最大為多少?(材質(zhì)及其厚度等暫忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點C.
(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點P是x軸下方的拋物線上一動點, 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點P的坐標(biāo);
(3) 在此拋物線上是否存在點Q,使得以A,C,B,Q四點為頂點的四邊形是直角梯形?若存在, 求出Q點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
點(﹣1,y1),(2,y2),(3,y3)均在函數(shù)y=的圖象上,則y1,y2,y3的大小關(guān)系是( 。
A.y3<y2<y1 | B.y2<y3<y1 |
C.y1<y2<y3 | D.y1<y3<y2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
已知反比例函數(shù)的圖象如圖,則一元二次方程根的情況是( )
A.有兩個不等實根 | B.有兩個相等實根 | C.沒有實根 | D.無法確定. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com