【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

【答案】=
【解析】解;設(shè)p(a,b),Q(m,n), 則SABP= APAB= a(b﹣n)= ab﹣ an,
SQMN= MNQN= (m﹣a)n= mn﹣ an,
∵點(diǎn)P,Q在反比例函數(shù)的圖像上,
∴ab=mn=k,
∴S1=S2
【考點(diǎn)精析】關(guān)于本題考查的比例系數(shù)k的幾何意義,需要了解幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(4,-5)所在的象限是(   )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸相交的于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.

(1)直接寫出A,B,C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(P不與C,B兩點(diǎn)重合),過點(diǎn)P作PFDE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.

①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形.

②設(shè)BCF的面積為S,求S與m的函數(shù)關(guān)系式;當(dāng)m為何值時(shí),S有最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(4,3)、B(4,1),把△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°后得到△A1B1C.

(1)畫出△A1B1C,直接寫出點(diǎn)A1、B1的坐標(biāo);

(2)求在旋轉(zhuǎn)過程中,△ABC所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A、點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接AQ、CP交于點(diǎn)M.
(1)求證:△ABQ≌△CAP;
(2)如圖1,當(dāng)點(diǎn)P、Q分別在AB、BC邊上運(yùn)動(dòng)時(shí),∠QMC變化嗎?若變化,請(qǐng)說理由;若不變,求出它的度數(shù).
(3)如圖2,若點(diǎn)P、Q在分別運(yùn)動(dòng)到點(diǎn)B和點(diǎn)C后,繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠QMC=度.(直接填寫度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)中國(guó)電子商務(wù)研究中心監(jiān)測(cè)數(shù)據(jù)顯示,2015年第一季度中國(guó)輕紡城市場(chǎng)群的商品成交額達(dá)27 800 000 000元,將27 800 000 000用科學(xué)記數(shù)法表示為( 。
A.2.78×1010
B.2.78×1011
C.27.8×1010
D.0.278×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a,b是方程x2﹣2x﹣3=0的兩個(gè)實(shí)數(shù)根,則a2+b2=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn)且∠BOD=60°,過點(diǎn)D作⊙O的切線CD交AB的延長(zhǎng)線于點(diǎn)C,E為的中點(diǎn),連接DE,EB.

(1)求證:四邊形BCDE是平行四邊形;

(2)已知圖中陰影部分面積為6π,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,點(diǎn)M、N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°,則∠B=

查看答案和解析>>

同步練習(xí)冊(cè)答案