【題目】如圖,已知直線PT與⊙O相切于點T,直線PO與⊙O相交于A,B兩點.
(1)求證:PT2=PAPB;
(2)若PT=TB=,求圖中陰影部分的面積.
【答案】(1)證明見解析。(2).
【解析】
試題分析:(1)連接OT,只要證明△PTA∽△PBT,可得,由此即可解決問題;
(2)首先證明△AOT是等邊三角形,根據(jù)S陰=S扇形OAT﹣S△AOT計算即可;
試題解析:(1)證明:連接OT.
∵PT是⊙O的切線,
∴PT⊥OT,
∴∠PTO=90°,
∴∠PTA+∠OTA=90°,
∵AB是直徑,
∴∠ATB=90°,
∴∠TAB+∠B=90°,
∵OT=OA,
∴∠OAT=∠OTA,
∴∠PTA=∠B,∵∠P=∠P,
∴△PTA∽△PBT,
∴,
∴PT2=PAPB.
(2)∵TP=TB=,
∴∠P=∠B=∠PTA,
∵∠TAB=∠P+∠PTA,
∴∠TAB=2∠B,
∵∠TAB+∠B=90°,
∴∠TAB=60°,∠B=30°,
∴tanB=
∴AT=1,
∵OA=OT,∠TAO=60°,
∴△AOT是等邊三角形,
∴S陰=S扇形OAT﹣S△AOT=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四邊形DEOF中正確的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成題目:
(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡單說明理由;
(3)運用(1)、(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,要測量池塘兩岸相對的兩點B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)連接DE、BF,若BD⊥EF,試探究四邊形EBDF的形狀,并對結(jié)論給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和.
(1)填空:一次函數(shù)的解析式為 ,反比例函數(shù)的解析式為 ;
(2)點是線段上一點,過點作軸于點,連接,若的面積為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com