【題目】如圖,在ABCD中,點(diǎn)E到AD,AB,BC三邊的距離都相等,則∠AEB( 。
A.是銳角B.是直角C.是鈍角D.度數(shù)不確定
【答案】B
【解析】
由平行四邊形的性質(zhì)得出∠BAD+∠ABC=180°,由題意得出AE平分∠BAD,BE平分∠ABC,得出∠BAE=∠BAD,∠ABE=∠ABC,求出∠BAE+∠ABE=(BAD+∠ABC)=90°,再由三角形內(nèi)角和定理即可得出結(jié)果.
解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠BAD+∠ABC=180°,
∵點(diǎn)E到AD,AB,BC三邊的距離都相等,
∴AE平分∠BAD,BE平分∠ABC,
∴∠BAE=∠BAD,∠ABE=∠ABC,
∴∠BAE+∠ABE=(BAD+∠ABC)=×180°=90°,
∴∠AEB=90°;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在中,,,點(diǎn)在斜邊上,將沿著過(guò)點(diǎn)的一條直線翻折,使點(diǎn)落在射線上的點(diǎn)處,連接并延長(zhǎng),交射線于.
(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),求BD的長(zhǎng).
(2)當(dāng)點(diǎn)在的延長(zhǎng)線上時(shí),設(shè)為,為,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出定義域.
(3)連接,當(dāng)是直角三角形時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距80km,一輛汽車(chē)上午9:00從甲地出發(fā)駛往乙地,勻速行駛了一半的路程后將速度提高了20km/h,并繼續(xù)勻速行駛至乙地,汽車(chē)行駛的路程y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示,該車(chē)到達(dá)乙地的時(shí)間是當(dāng)天上午( 。
A. 10:35 B. 10:40 C. 10:45 D. 10:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)被平均分成等份的轉(zhuǎn)盤(pán),每一個(gè)扇形中都標(biāo)有相應(yīng)的數(shù)字,甲乙兩人分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),設(shè)甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為,乙轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為(當(dāng)指針在邊界上時(shí),重轉(zhuǎn)一次,直到指向一個(gè)區(qū)域?yàn)橹梗?/span>
直接寫(xiě)出甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的概率;
用樹(shù)狀圖或列表法,求出點(diǎn)落在第二象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商店只有雪碧、可樂(lè)、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購(gòu)買(mǎi)飲料,每種飲料被選中的可能性相同.
(1)若他去買(mǎi)一瓶飲料,則他買(mǎi)到奶汁的概率是 ;
(2)若他兩次去買(mǎi)飲料,每次買(mǎi)一瓶,且兩次所買(mǎi)飲料品種不同,請(qǐng)用樹(shù)狀圖或列表法求出他恰好買(mǎi)到雪碧和奶汁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)是的中點(diǎn).在和上.分別有一動(dòng)點(diǎn),在移動(dòng)過(guò)程中保持.
(1)判斷的形狀,并說(shuō)明理出.
(2)當(dāng)時(shí),求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2+2=0.
(1)若方程總有兩個(gè)實(shí)數(shù)根,求m的取值范圍;
(2)若方程有一個(gè)實(shí)數(shù)根為1,求m的值和另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一條公路旁依次有、、三個(gè)村莊,甲、乙兩人騎自行車(chē)分別從村、村同時(shí)出發(fā)前往村,甲、乙之間的距離與騎行時(shí)間之間的函數(shù)關(guān)系如圖所示,下列結(jié)論:
①、兩村相距;
②甲出發(fā)后到達(dá)村;
③甲每小時(shí)比乙我騎行;
④相遇后,乙又騎行了或時(shí)兩人相距.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個(gè)根,則實(shí)數(shù)a、b、m、n的大小關(guān)系是( )
A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com