【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A,B兩點(diǎn).且點(diǎn)A的坐標(biāo)為.
(1)求該一次函數(shù)的解析式;
(2)求的面積.
【答案】(1);(2)9
【解析】
(1)由點(diǎn)A在反比例函數(shù)圖像上,求出a的值得到點(diǎn)A坐標(biāo),代入一次函數(shù)解析式即可;
(2)聯(lián)立兩個函數(shù)的解析式,即可求得點(diǎn)B的坐標(biāo),然后由S△AOB=S△AOC+S△BOC求得答案.
解:∵點(diǎn)A在反比例函數(shù)上,
∴,解得a=2,
∴A點(diǎn)坐標(biāo),
∵點(diǎn)A在一次函數(shù)上,
∴,解得b=3,
∴該一次函數(shù)的解析式為;
(2)設(shè)直線與x軸交于點(diǎn)C,
令,解得x=- 2,
∴一次函數(shù)與x軸的交點(diǎn)坐標(biāo)C(- 2,0),
∵,
解得或,
∴B(- 4,-3),
∴S△AOB=S△AOC+S△BOC,
=
=
=
=9
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點(diǎn),動點(diǎn)從點(diǎn)出發(fā)以每秒個單位長度的速度向終點(diǎn)運(yùn)動,當(dāng)點(diǎn)與點(diǎn)不重合時(shí),過點(diǎn)作交邊于點(diǎn),以為邊作使點(diǎn)在點(diǎn)的下方,且,設(shè)與重疊部分圖形的面積為,點(diǎn)的運(yùn)動時(shí)間為秒.
(1)的長為 ;
(2)當(dāng)點(diǎn)落在邊上時(shí),求的值;
(3)當(dāng)與重疊部分圖形為四邊形時(shí),求與之間的函數(shù)關(guān)系式;
(4)若射線與邊交于點(diǎn)連結(jié),當(dāng)的垂直平分線經(jīng)過的頂點(diǎn)時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖和都是邊長為的等邊三角形,它們的邊在同一條直線上,點(diǎn),重合,現(xiàn)將沿著直線向右移動,直至點(diǎn)與重合時(shí)停止移動.在此過程中,設(shè)點(diǎn)移動的距離為,兩個三角形重疊部分的面積為,則隨變化的函數(shù)圖像大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一手機(jī)支架,其中AB=8cm,底座CD=1cm,當(dāng)點(diǎn)A正好落在桌面上時(shí)如圖2所示,∠ABC=80°,∠A=60°.
(1)求點(diǎn)B到桌面AD的距離;
(2)求BC的長.(結(jié)果精確到0.1cm;參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線與軸的正半軸交于點(diǎn)A,與軸的負(fù)半軸交于點(diǎn)B, ,過點(diǎn)A作軸的垂線與過點(diǎn)O的直線相交于點(diǎn)C,直線OC的解析式為,過點(diǎn)C作軸,垂足為.
(1)如圖1,求直線的解析式;
(2)如圖2,點(diǎn)N在線段上,連接ON,點(diǎn)P在線段ON上,過P點(diǎn)作軸,垂足為D,交OC于點(diǎn)E,若,求的值;
(3)如圖3,在(2)的條件下,點(diǎn)F為線段AB上一點(diǎn),連接OF,過點(diǎn)F作OF的垂線交線段AC于點(diǎn)Q,連接BQ,過點(diǎn)F作軸的平行線交BQ于點(diǎn)G,連接PF交軸于點(diǎn)H,連接EH,若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABE中,C,D是邊BE上的兩點(diǎn),有下面四個關(guān)系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.請用其中兩個作為已知條件,余下兩個作為求證的結(jié)論,寫出你的已知和求證,并證明.
已知:
求證:
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2﹣2ax+c的圖象經(jīng)過點(diǎn)A(﹣1,1),將A點(diǎn)向右平移3個單位長度,再向上平移2個單位長度,得到點(diǎn)B,直線y=2x+m經(jīng)過點(diǎn)B,與y軸交于點(diǎn)C.
(1)求點(diǎn)B,C的坐標(biāo);
(2)求二次函數(shù)圖象的對稱軸;
(3)若二次函數(shù)y=ax2﹣2ax+c(﹣1<x<2)的圖象與射線CB恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角一般要滿足,現(xiàn)有一架長的梯子.
(1)使用這架梯子最高可以安全攀上多高的墻(結(jié)果保留小數(shù)點(diǎn)后一位)?
(2)當(dāng)梯子底端距離墻面時(shí),等于多少度(結(jié)果保留小數(shù)點(diǎn)后一位)?此時(shí)人是否能夠安全使用這架梯子?
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了美化環(huán)境,計(jì)劃分兩次購進(jìn)A,B兩種花,第一次分別購進(jìn)A,B兩種花30棵和15棵,共花費(fèi)675元;第二次以同樣的單價(jià)分別購進(jìn)A、B兩種花12棵和5棵,第二次花費(fèi)265元.
(1)求A、B兩種花的單價(jià)分別是多少元?
(2)若購買A、B兩種花共31棵,且B種花的數(shù)量不多于A種花的數(shù)量的2倍,請你給出一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com