【題目】如圖,在中,,平分于點(diǎn),點(diǎn)上一點(diǎn),經(jīng)過點(diǎn),分別交于點(diǎn),,連接,連接于點(diǎn)

1)求證:的切線;

2)設(shè),,試用含,的代數(shù)式表示線段的長;

3)若,求的長.

【答案】1)見解析;(2AD;(3

【解析】

1)連接OD,由AD為角平分線得到一對角相等,再由等邊對等角得到一對角相等,等量代換得到內(nèi)錯角相等,進(jìn)而得到ODAC平行,得到ODBC垂直,即可得證;

2)連接EF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對的圓周角,進(jìn)而得到△ABD與△ADF相似,由相似得比例,即可表示出AD;

3)設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由此求出AF,根據(jù)(2)中結(jié)論AD求出AD,再根據(jù)AFOD找出相似比,進(jìn)而求出DG的長即可.

證明:(1)連接OD

AD平分∠BAC

∴∠BAD=∠CAD

OAOD

∴∠ODA=∠OAD

∴∠ODA=∠CAD

ODAC

∵∠ODC=∠C90°

ODBC

BC為⊙O的切線

2)連接EF

AE為⊙O的直徑

∴∠AFE=∠C90°

EFBC

∴∠B=∠AEF=∠ADF

∵∠BAD=∠DAF

∴△ABD∽△ADF

,即

AD

3)設(shè)圓的半徑為r,則OD=rOB=r+5

RtBOD中,sinB

解得:r3

AE6,AB11

RtAEF中,AFAEsinAEFAEsinB

AFOD,

,

DGAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與一直線相交于A(1,0),C(2,3)兩點(diǎn),與y軸交于點(diǎn)N.其頂點(diǎn)為D

1)拋物線及直線AC的函數(shù)關(guān)系式;

2)若拋物線的對稱軸與直線AC相交于點(diǎn)B,E為直線AC上的任意一點(diǎn),過點(diǎn)EEFBD交拋物線于點(diǎn)F,以BD,EF為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由;

3)若P是拋物線上位于直線AC上方的一個動點(diǎn),求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上

x

0

1

2

3

y

m

n

3

n

則表格中的m______;當(dāng)時,的大小關(guān)系為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,正方形OABC的頂點(diǎn)A、C分別在x,y軸上,且AO1.將正方形OABC繞原點(diǎn)O順時針旋轉(zhuǎn)90°,且A1O2AO,得到正方形OA1B1C1,再將正方OA1B1C1繞原點(diǎn)O順時針旋轉(zhuǎn)90°,且A2O2A1O,得到正方形OA2B2C2…以此規(guī)律,得到正方形OA2019B2019C2019,則點(diǎn)B2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB6,∠DAB60°AE分別交BC、BD于點(diǎn)EF,CE2,連CF,以下結(jié)論:①ABF≌△CBF;②點(diǎn)EAB的距離是;③ADFEBF的面積比為32,④ABF的面積為,其中一定成立的有( 。﹤.

A.2B.3C.1D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊的周長為1,作,在的延長線上取點(diǎn),使,連接,以為邊作等邊;作,在的延長線上取點(diǎn),使,連接,以為邊作等邊;且點(diǎn),都在直線同側(cè),如此下去,可得到的邊長為__________.(,且為整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC12cm,BC16cm,AB20cm,∠CAB的角平分線ADBC于點(diǎn)D

1)根據(jù)題意將圖形補(bǔ)畫完整(要求:尺規(guī)作圖保留作圖痕跡,不寫作法);

2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A12,1)在直線y=kx上,過點(diǎn)A1A1B1y軸交x軸于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1,再過點(diǎn)C1A2B2y軸,分別交直線y=kxx軸于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),,A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2,按此規(guī)律進(jìn)行下去,則帶點(diǎn)Cn的坐標(biāo)為_________________.(結(jié)果用含正整數(shù)n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC中,∠B=45°,∠C=60°,BC=4,D、F分別為ABAC邊上的一個動點(diǎn),過D分別作DFACFDGBCG,那么FG的最小值為(

A.2B.C.D.

查看答案和解析>>

同步練習(xí)冊答案