【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD

1∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);

2OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°

用含x的代數(shù)式表示∠EOF;

∠AOC的度數(shù).

【答案】(1)55°;(2)①FOE=x;②100°.

【解析】試題分析:(1)、根據(jù)對(duì)頂角的性質(zhì)得出∠BOD的度數(shù),根據(jù)直角和角平分線的性質(zhì)求出∠BOF和∠BOE的度數(shù),從而根據(jù)∠EOF=∠BOF+∠BOD得出答案;(2)、根據(jù)角平分線的性質(zhì)得出∠BOE=∠DOE,根據(jù)平角的性質(zhì)得出∠COE=∠AOE,最后根據(jù)角平分線的性質(zhì)得出∠FOE的度數(shù);根據(jù)題意得出∠BOE= -15°,根據(jù)∠BOE+∠AOE=180°求出x的值,最后根據(jù)∠AOC=2∠BOE得出答案.

試題解析:解:(1)由對(duì)頂角相等可知:∠BOD=∠AOC=70°,

∵∠FOB=∠DOF﹣∠BOD,∴∠FOB=90°﹣70°=20°,

∵OE平分∠BOD,∴∠BOE=BOD=×70°=35°,

∴∠EOF=∠FOB+∠BOE=35°+20°=55°,

(2)①∵OE平分∠BOD,

∴∠BOE=∠DOE,

∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,

∴∠COE=∠AOE=x,

∵OF平分∠COE, ∴∠FOE=x;

∵∠BOE=FOE﹣FOB,∴∠BOE=x﹣15°,

∵∠BOE+AOE=180°,x ﹣15°+x=180°,解得:x=130°,

∴∠AOC=2∠BOE=2×180°﹣130°=100°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個(gè)數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).

(1)求線段BC的長(zhǎng);

(2)求線段MN的長(zhǎng);

(3)若C在線段AB延長(zhǎng)線上,且滿(mǎn)足AC﹣BC=b cm,M,N分別是線段AC,BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)寫(xiě)出你的結(jié)論(不需要說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補(bǔ)充條件后仍不一定能保證ABC≌△ABC,則補(bǔ)充的這個(gè)條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點(diǎn)B為圓心的扇形與邊CD相切于點(diǎn)E,扇形的圓心角為60°,點(diǎn)E是CD的中點(diǎn),圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列不等式,并把它們的解集分別表示在數(shù)軸上.

(1) ≥3(x-1)-4;

(2) ≥1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=65°,將一直角三角形的直角三角板的直角頂點(diǎn)放在點(diǎn)O.

1)如圖1,將三角板MON的一邊ON與射線OB重合,則∠MOC=___________

2)如圖2,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON和∠CON的度數(shù);

3)將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖3時(shí),∠NOC=AOM,求∠NOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,B=90°,點(diǎn)EAC的中點(diǎn),AC=2ABBAC的平分線ADBC于點(diǎn)D,作AFBC,連接DE并延長(zhǎng)交AF于點(diǎn)F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點(diǎn),并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結(jié)CD,求四邊形OCDB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案