【題目】計(jì)算:

1)(﹣3)﹣(﹣2+(﹣4);

2)﹣10+14+168;

3(4)×(5)90÷(15);

4)﹣23÷×(﹣2

5)(+×(﹣36);

6)﹣14×[2﹣(﹣32]

【答案】1;

2;

3;

4;

5)-;

6.

【解析】

1)(2)直接利用有理數(shù)加減混合運(yùn)算法則求出答案;
3)直接利用有理數(shù)乘除混合運(yùn)算法則求出答案;
4)按照運(yùn)算循序,首先算乘方化簡各式,再計(jì)算求出答案;

5)先利用乘法分配律化簡,然后利用有理數(shù)加減混合運(yùn)算法則求出答案;

6)按照運(yùn)算循序,首先算乘方化簡各式,再利用有理數(shù)混合運(yùn)算法則求出答案.

1

2

;

3

4

5

;

6

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為預(yù)防疾病,某校對教室進(jìn)行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量mg)與燃燒時(shí)間(分鐘)成正比例;燃燒后, 成反比例(如圖所示).現(xiàn)測得藥物10分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為8mg.據(jù)以上信息解答下列問題:

1求藥物燃燒時(shí)的函數(shù)關(guān)系式.(2求藥物燃燒后的函數(shù)關(guān)系式.

3)當(dāng)每立方米空氣中含藥量低于1.6mg時(shí),對人體方能無毒害作用,那么從消毒開始,經(jīng)多長時(shí)間學(xué)生才可以回教室?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBD于E,CFBD于F,連結(jié)AF,CE.求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長;

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別交于點(diǎn),點(diǎn),在第一象限內(nèi)有一動(dòng)點(diǎn)在反比例函數(shù)上,由點(diǎn)軸,軸所作的垂線,(垂足為,)分別與直線相交于點(diǎn),點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),矩形的面積為定值

(1)求的度數(shù);

(2)求反比例函數(shù)解析式.

(3)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過 , 三點(diǎn).

)求出拋物線的解析式.

是拋物線上一動(dòng)點(diǎn),過軸,垂足為,是否存在點(diǎn),使得以 , 為頂點(diǎn)的三角形與相似?若存在,請求出符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,BAC與∠DCA的平分線相交于點(diǎn)G,GEAC于點(diǎn)E,FAC上的一點(diǎn),AF=FC,GHCDH.下列說法①AGCG;②∠BAG=CGE;SAFG=SCFG;④若∠EGH∶∠ECH=27,則∠EGH=40°.其中正確的有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明命題角的平分線上的點(diǎn)到角的兩邊的距離相等,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小明同學(xué)根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.

已知:如圖,OC是∠AOB的角平分線,點(diǎn) P OC 上, 求證:

(要求:請你補(bǔ)全已知和求證,并寫出證明過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(0,a),B(0,b),C(m,b)(a-4)2+|b+3|=0SABC=14。

1)求C點(diǎn)的坐標(biāo)

2)作DEDCy軸于E點(diǎn),EF為∠AED的平分線,且∠DFE=90o。求證:FD平分∠ADO.

查看答案和解析>>

同步練習(xí)冊答案