如圖,矩形ABCD中,AD=8,AB=4,點(diǎn)E沿A→D方向在線段AD上運(yùn)動(dòng),點(diǎn)F沿D→A方向在線段DA上運(yùn)動(dòng),點(diǎn)E、F速度都是每秒2個(gè)長(zhǎng)度單位,E、F兩點(diǎn)同時(shí)出發(fā),且當(dāng)E點(diǎn)運(yùn)動(dòng)到D點(diǎn)時(shí)兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間是t(秒).
(1)當(dāng) 0<t<2時(shí),判斷四邊形BCFE的形狀,并說(shuō)明理由;
(2)當(dāng)0<t<2時(shí),射線BF、CE相交于點(diǎn)O,設(shè)S△FEO=y,求y與t之間的函數(shù)關(guān)系式;
(3)問(wèn)射線BF與射線CE所成的銳角是否能等于60°?若有可能,請(qǐng)求出t的值;若不能,請(qǐng)說(shuō)明理由.

【答案】分析:(1)連結(jié)BE、CF,則AE=2t,DF=2t,易證得Rt△ABE≌Rt△DCF,得到BE=CF,由于EF∥BC,EF≠BC,所以可判斷四邊形BCFE為等腰梯形;
(2)過(guò)O點(diǎn)作MN⊥AD于M,交BC于N,由EF∥BC,根據(jù)三角形相似的判定方法得△OEF∽△OCB,則=,即=,解得OM=,然后根據(jù)三角形面積公式可得到y(tǒng)與t的函數(shù)關(guān)系;
(3)討論:當(dāng)0<t<2時(shí),∠ABE和∠DCF都小于45°,則△OBC為鈍角三角形,則∠EOB=60°,所以∠OCB=∠OBC=30°,利用含30度的直角三角形三邊的關(guān)系得到CH=EH=4,得到AE=8-4,此時(shí)t==(4-2)s;當(dāng)2≤t≤4時(shí),BF與CE相交于O點(diǎn),∠BOC=60°,同理可得四邊形BCEF為等腰梯形,則∠DOE=30°,得到ED==,則AE=8-,利用速度公式得到此時(shí)t==(4-)s.
解答:解:(1)四邊形BCFE為等腰梯形.理由如下
連結(jié)BE、CF,如圖,
∵AE=2t,DF=2t,
∴AE=DF,
∵四邊形ABCD為矩形,
∴AD∥BC,AB=CD,∠A=∠D=90°,
∴Rt△ABE≌Rt△DCF,
∴BE=CF,
而EF∥BC,EF≠BC,
∴四邊形BCFE為等腰梯形;

(2)過(guò)O點(diǎn)作MN⊥AD于M,交BC于N,如圖,
則MN⊥BC,
∴MN=AB=4,
則EF=8-2t-2t=4t,
∵EF∥BC,
∴△OEF∽△OCB,
=,即=,解得OM=,
∴y=OM•EF=××(8-2t),
即y=

(3)存在.理由如下:
當(dāng)0<t<2時(shí),∠ABE和∠DCF都小于45°,則△OBC為鈍角三角形,
若射線BF與射線CE所成的銳角等于60°,即∠EOB=60°,所以∠OCB=∠OBC=30°,
作EH⊥BC于H,則EH=4,
∴CH=EH=4
∴BH=8-4,
∴AE=8-4
∴t==(4-2)s;
當(dāng)2≤t≤4時(shí),BF與CE相交于O點(diǎn),如圖,
若射線BF與射線CE所成的銳角等于60°,即∠BOC=60°,
同理可得四邊形BCEF為等腰梯形,
∴∠OBC=∠OCB=60°,
∴∠DOE=30°,
∴ED==,
∴AE=8-
∴t==(4-)s.
∴當(dāng)t=(4-2)s或(4-)s時(shí),射線BF與射線CE所成的銳角等于60°.
點(diǎn)評(píng):本題考查了四邊形綜合題:熟練掌握矩形的性質(zhì)以及等腰梯形的判定;會(huì)運(yùn)用三角形相似的性質(zhì)和含30度的直角三角形三邊的關(guān)系進(jìn)行幾何計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點(diǎn),DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點(diǎn)P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點(diǎn),且BE=ED,P是對(duì)角線上任意一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長(zhǎng)為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點(diǎn),且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊(cè)答案