【題目】若一次函數(shù)圖像的交點(diǎn)在第一象限,則一次函數(shù)的圖像不經(jīng)過( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

【答案】D

【解析】

根據(jù)一次函數(shù)圖像的交點(diǎn)在第一象限可確定k,b的取值范圍,再根據(jù)k,b的取值范圍確定一次函數(shù)y=kx+b圖象在坐標(biāo)平面內(nèi)的位置關(guān)系, 據(jù)此解答即可.

解:-3<0

直線y=kx-3與y軸的交點(diǎn)(0,-3)在y軸的負(fù)半軸,

直線y=kx-3一定經(jīng)過第三、四象限,且直線y=kx-3經(jīng)過第一象限,

k>0,

-1<0,

直線y=-x+b一定經(jīng)過第二、四象限,且直線y=-x+b經(jīng)過第一象限

y=-x+b經(jīng)過第一、二、四象限,

b>0,

直線y=kx+b經(jīng)過第一、二、三象限,

直線y=kx+b不經(jīng)過第四象限,

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE平分∠CAD,AEBC,O為△ABC內(nèi)一點(diǎn),∠OBC=∠OCB.求證:∠ABO=∠ACO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以對(duì)角線BD為邊作菱形BDFE,使B,CE三點(diǎn)在同一直線上,連接BF,交CD于點(diǎn)G

1)求證:CG=CE;

2)若正方形邊長(zhǎng)為4,求菱形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+a(a為常數(shù),a≠0)與反比例函數(shù)y= (a為常數(shù),a≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線直線,垂足為,如圖放置,過點(diǎn)交直線于點(diǎn),在內(nèi)取一點(diǎn),連接

1)若,,則_______

2)若,,則_______°.(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過點(diǎn)A作AH⊥EF,垂足為H,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,若BE=2,DF=3,則AH的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某武警部隊(duì)在一次地震搶險(xiǎn)救災(zāi)行動(dòng)中,探險(xiǎn)隊(duì)員在相距4米的水平地面A,B兩處均探測(cè)出建筑物下方C處有生命跡象,已知在A處測(cè)得探測(cè)線與地面的夾角為30°,在B處測(cè)得探測(cè)線與地面的夾角為60°,求該生命跡象C處與地面的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并完成下列證明:如圖,ABCD,∠B55°,∠D125°,求證:BCDE

證明:ABCD(已知),

∴∠C=∠B ),又∵∠B55° ),

∴∠C=______°(等量代換),

∵∠D125° ),

BCDE ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書冊(cè)數(shù)的情況,繪制成條形統(tǒng)計(jì)圖(如圖1)和不完整的扇形圖(如圖2),其中條形統(tǒng)計(jì)圖被墨跡遮蓋了一部分.

(1)求條形統(tǒng)計(jì)圖中被遮蓋的數(shù),并寫出冊(cè)數(shù)的中位數(shù);

(2)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊(cè),將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊(cè)數(shù)的中位數(shù)沒有改變,則最多補(bǔ)查了____人.

查看答案和解析>>

同步練習(xí)冊(cè)答案