【題目】觀察下列等式,探究發(fā)現(xiàn)規(guī)律,并解決問題,

;

;

1)直接寫出第④個(gè)等式: ;

2)猜想第個(gè)等式(用含字母的式子表示),并說明這個(gè)等式的正確性;

3)利用發(fā)現(xiàn)的規(guī)律,求的值.(參考數(shù)據(jù):

【答案】135342×34;(2)猜想:第n個(gè)等式為:3n+13n2×3n.理由見解析;(388572

【解析】

1)根據(jù)已知規(guī)律寫出④即可.

2)根據(jù)已知規(guī)律寫出n個(gè)等式,利用提公因式法即可證明規(guī)律的正確性.

3)根據(jù)發(fā)現(xiàn)的規(guī)律得到(32-31+33-32+34-33+…+311-310=231+32+33+…+310),依此可求31+32+33+…+310的值.

1)①;

;

∴第④個(gè)等式:35-34=2×34;

故答案為:35-34=2×34;

2)猜想:第n個(gè)等式為:3n+13n2×3n

理由如下:

3n+13n3×3n3n=(31×3n2×3n

3n+13n2×3n;

3)根據(jù)發(fā)現(xiàn)的規(guī)律,有:3113102×310,

∴(3231+3332+3433+…+311310)=231+32+33+…+310),

31131231+32+33+…+310),

31+32+33+…+310(3113).

311177147

31+32+33+…+310(1771473)=88572

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過DDEAC,垂足為E

1)證明:DE為⊙O的切線;

2)連接OE,若BC=4,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于Am,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)求的面積;

3)根據(jù)圖象直接寫出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)是,為拋物線上的一個(gè)動點(diǎn),過點(diǎn)軸于點(diǎn),交直線于點(diǎn),拋物線的對稱軸是直線

(1)求拋物線的函數(shù)表達(dá)式和直線的解析式;

(2)若點(diǎn)在第二象限內(nèi),且,求的面積;

(3)(2)的條件下,若為直線上一點(diǎn),是否存在點(diǎn),使為等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點(diǎn)是斜邊上一點(diǎn),且

(Ⅰ)求的值;

(Ⅱ)過點(diǎn)與邊相切,切點(diǎn)為的中點(diǎn),與直線的另一個(gè)交點(diǎn)為

i)求的半徑;

(ⅱ)連接,試探究的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點(diǎn),與軸相交于點(diǎn),連接

1之間的關(guān)系式為: ;

2)判斷線段之間的數(shù)量關(guān)系,并說明理由;

3)設(shè)點(diǎn)是拋物線、之間的動點(diǎn),連接,,當(dāng)時(shí):

①若,求點(diǎn)的坐標(biāo);

②若,且的最大值為,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從兩地同時(shí)出發(fā),沿同一條公路相向行駛,相遇后,甲車?yán)^續(xù)以原速行駛到地,乙車立即以原速原路返回到地,甲、乙兩車距地的路程與各自行駛的時(shí)間之間的關(guān)系如圖所示.

________,________;

⑵求乙車距地的路程關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;

⑶當(dāng)甲車到達(dá)地時(shí),求乙車距地的路程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是圓O的內(nèi)接三角形,過點(diǎn)OODAB與點(diǎn)D,連接OA,點(diǎn)EAC的中點(diǎn),延長EOBC于點(diǎn)F

1)求證:CEF∽△ODA

2)若,ABC是不是等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自行車因其便捷環(huán)保深受人們喜愛,成為日常短途代步與健身運(yùn)動首選.如圖1是某品牌自行車的實(shí)物圖,圖2是它的簡化示意圖.經(jīng)測量,車輪的直徑為,中軸軸心到地面的距離,后輪中心與中軸軸心連線與車架中立管所成夾角,后輪切地面于點(diǎn).為了使得車座到地面的距離,應(yīng)當(dāng)將車架中立管的長設(shè)置為_____________.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案