初三(1)班數(shù)學(xué)興趣小組在社會實(shí)踐活動中,進(jìn)行了如下的課題研究:用一定長度的鋁合金材料,將它設(shè)計(jì)成外觀為長方形的三種框架,使長方形框架面積最大.

小組討論后,同學(xué)們做了以下三種試驗(yàn):                  

 


圖案(1)            圖案(2)              圖案(3)          

請根據(jù)以上圖案回答下列問題:

(1)在圖案(1)中,如果鋁合金材料總長度(圖中所有黑線的長度和)為6米,當(dāng)AB為1米,

長方形框架ABCD的面積是           m2;

(2)在圖案(2)中,如果鋁合金材料總長度為6米,設(shè)AB米,長方形框架ABCD的面積為       (用含的代數(shù)式表示);當(dāng)AB         時(shí)米, 長方形框架ABCD的面積最大;

在圖案(3)中,如果鋁合金材料總長度為米, 設(shè)AB米,當(dāng)AB是多少米時(shí), 長方形框架ABCD的面積最大.

 (1);                                                 

 (2)-x2+2x  ,1, ;                     

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

課題研究:現(xiàn)有邊長為120厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個開口的水槽,使水槽能通過的水的流量最大.
初三(1)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為直角三角形的水槽(如圖1).
若∠ACB=90°,設(shè)AC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽(如圖2).
若∠ABC=120°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大;
(2)假如你是該興趣小組中的成員,請你再提供兩種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

初三(1)班數(shù)學(xué)興趣小組在社會實(shí)踐活動中,進(jìn)行了如下的課題研究:用一定長度的鋁合金材料,將它設(shè)計(jì)成外觀為長方形的三種框架,使長方形框架面積最大.
小組討論后,同學(xué)們做了以下三種試驗(yàn):

請根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長度(圖中所有黑線的長度和)為6米,當(dāng)AB為1米,長方形框架ABCD的面積是
4
3
4
3
m2;
(2)在圖案(2)中,如果鋁合金材料總長度為6米,設(shè)AB為x米,長方形框架ABCD的面積為S=
-x2+2x
-x2+2x
(用含x的代數(shù)式表示);當(dāng)AB=
1
1
時(shí)米,長方形框架ABCD的面積S最大;在圖案(3)中,如果鋁合金材料總長度為l米,設(shè)AB為x米,當(dāng)AB是多少米時(shí),長方形框架ABCD的面積S最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

初三(1)班數(shù)學(xué)興趣小組,用高為1.2米的測傾器、皮尺測量校內(nèi)一辦公樓的高AB時(shí),設(shè)計(jì)如圖所示的測量方案(測點(diǎn)E、F與樓底B在同一直線上),并有四個同學(xué)分別測量出以下四組數(shù)據(jù)(角的度數(shù)、線段的長):
①∠2、FB;②∠1、∠2、EF;③∠2、EF;④∠1、EB,則能根據(jù)所測數(shù)據(jù)求出樓高AB的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)二模)初三(1)班數(shù)學(xué)興趣小組在社會實(shí)踐活動中,進(jìn)行了如下的課題研究:
用一長為18cm、寬為12cm的矩形鐵皮(如右圖),裁剪出一個扇形,使扇形的面積盡可能大.小組討論后,設(shè)計(jì)了以下三種方案:
(1)以CD為直徑畫。ㄈ鐖D1),則截得的扇形面積為
18π
18π
cm2;
(2)以C為圓心,CD為半徑畫。ㄈ鐖D2),則截得的扇形面積為
36π
36π
cm2;
(3)以BC為直徑畫。ㄈ鐖D3),則截得的扇形面積為
81
2
π
81
2
π
cm2;經(jīng)過這三種情形的研究,小明突然受到啟發(fā),他覺得下面這一方案更佳:圓心仍在BC邊上,以O(shè)C為半徑畫弧,切AD于E,交AB于F(如圖4).請你通過計(jì)算說明,小明的方案所截得的扇形面積更大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我校初三(11)班數(shù)學(xué)興趣小組的同學(xué)們測量校園內(nèi)一棵大樹(如圖)的高度,設(shè)計(jì)的方案及測量數(shù)據(jù)如下:
(1)在大樹前的平地上選擇一點(diǎn)A,測得由點(diǎn)A看大樹頂端C的仰角為31°;
(2)在點(diǎn)A和大樹之間選擇一點(diǎn)B(A、B、D在同一直線上),測得由點(diǎn)B看大樹頂端C的仰角恰好為45°
(3)量出A、B兩點(diǎn)間的距離為5米.請你根據(jù)以上數(shù)據(jù)求出大樹CD的高度.(tan31°≈0.6,sin31°≈0.5,cos31°≈0.8)

查看答案和解析>>

同步練習(xí)冊答案