已知:BC是直線,∠1=∠4

求證:∠2=∠3.

證明:∵BC是一直線,(已知)

    ∴∠1+∠2=180°,∠3+∠4=180°(         )

    ∵∠2=180°-∠1,∠3=180°-∠4

    又∠1=∠4(已知)

    ∴∠2=∠3.

答案:
解析:

平角定義


提示:

平角概念,∠1+∠2=180°,∠3+∠4=180°。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫(xiě)出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)C是直線AB上的一點(diǎn),AB=10cm,BC=6cm,點(diǎn)D是線段BC的中點(diǎn),則AD的長(zhǎng)度是
13cm或7cm
13cm或7cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:022

已知:BC是直線,∠1=∠4

求證:∠2=∠3.

證明:∵BC是一直線,(已知)

    ∴∠1+∠2=180°,∠3+∠4=180°(    )

    ∵∠2=180°-∠1,∠3=180°-∠4

    又∠1=∠4(已知)

    ∴∠2=∠3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆福建南安市初三學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線軸交于點(diǎn)D(0,3).

1.直接寫(xiě)出的值;

2.若拋物線與軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;

3.已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),

①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)P作PE⊥軸,垂足為E,連結(jié)BE.設(shè)點(diǎn)P的坐標(biāo)為(),△PBE的面積為,求的函數(shù)關(guān)系式,寫(xiě)出自變量的取值范圍,并求出的最大值;

②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求的值,并直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案