【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2﹣2ax+(a>0)與y軸交于點(diǎn)A,過(guò)點(diǎn)A作x軸的平行線(xiàn)交拋物線(xiàn)于點(diǎn)M.P為拋物線(xiàn)的頂點(diǎn).若直線(xiàn)OP交直線(xiàn)AM于點(diǎn)B,且M為線(xiàn)段AB的中點(diǎn),則a的值為_____.
【答案】2
【解析】
先根據(jù)拋物線(xiàn)解析式求出點(diǎn)A的坐標(biāo)和其對(duì)稱(chēng)軸,再根據(jù)對(duì)稱(chēng)性求出點(diǎn)M的坐標(biāo),利用點(diǎn)M為線(xiàn)段AB中點(diǎn),得出點(diǎn)B的坐標(biāo);用含a的式子表示出點(diǎn)P的坐標(biāo),寫(xiě)出直線(xiàn)OP的解析式,再將點(diǎn)B的坐標(biāo)代入即可求得答案.
∵拋物線(xiàn)y=ax2﹣2ax+(a>0)與y軸交于點(diǎn)A,
∴A(0,),拋物線(xiàn)的對(duì)稱(chēng)軸為x=1
∴頂點(diǎn)P坐標(biāo)為(1,﹣a),點(diǎn)M坐標(biāo)為(2,)
∵點(diǎn)M為線(xiàn)段AB的中點(diǎn),
∴點(diǎn)B坐標(biāo)為(4,)
設(shè)直線(xiàn)OP解析式為y=kx(k為常數(shù),且k≠0)
將點(diǎn)P(1,)代入y=kx得=k
∴直線(xiàn)OP解析式為:y=()x
將點(diǎn)B(4,)代入y=()x得=()×4
解得:a=2
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工直徑為的同種規(guī)格零件,為了檢查兩臺(tái)機(jī)床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺(tái)機(jī)床的產(chǎn)品中各抽取件進(jìn)行檢測(cè),結(jié)果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺(tái)機(jī)床所加工零件直徑的平均數(shù)和方差;
(2)根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),你認(rèn)為哪一臺(tái)機(jī)床生產(chǎn)零件的穩(wěn)定性更好一些,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,動(dòng)點(diǎn)M、N同時(shí)從A點(diǎn)出發(fā),點(diǎn)M沿AB以每秒1個(gè)單位長(zhǎng)度的速度向中點(diǎn)B運(yùn)動(dòng),點(diǎn)N沿折現(xiàn)ADC以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,則△CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過(guò)點(diǎn)E作EC⊥OA于點(diǎn)C,過(guò)點(diǎn)B作⊙O的切線(xiàn)交CE的延長(zhǎng)線(xiàn)于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,過(guò)D點(diǎn)作DF⊥AB于點(diǎn)F,
①則cos∠EDF= ;
②求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=6cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)以1cm/s的速度沿CA勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)以cm/s的速度沿AB勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)
(1)當(dāng)t=3時(shí),線(xiàn)段PQ的長(zhǎng)為 cm;
(2)是否存在某一時(shí)刻t,使點(diǎn)B在線(xiàn)段PQ的垂直平分線(xiàn)上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,以PC為邊,往CB方向作正方形CPMN,設(shè)四邊形CPMN與Rt△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程
(1)(x-1)2=4
(2)2(x-3)=3x(x-3)
(3)x2-2x-5=0
(4)3x2=4-2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線(xiàn)的表達(dá)式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線(xiàn)與拋物線(xiàn)相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明到青城山游玩,乘坐纜車(chē),當(dāng)?shù)巧嚼|車(chē)的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它經(jīng)過(guò)了200 m,纜車(chē)行駛的路線(xiàn)與水平夾角∠α=16°,當(dāng)纜車(chē)?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200 m,纜車(chē)由點(diǎn)B到點(diǎn)D的行駛路線(xiàn)與水平夾角∠β=42°,求纜車(chē)從點(diǎn)A到點(diǎn)D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有四張背面完全相同的卡片,正面上分別標(biāo)有數(shù)字﹣2,﹣1,1,2.把這四張卡片背面朝上,隨機(jī)抽取一張,記下數(shù)字為m;放回?cái)噭,再隨機(jī)抽取一張卡片,記下數(shù)字為n,則y=mx+n不經(jīng)過(guò)第三象限的概率為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com