在直角坐標(biāo)系中,O為坐標(biāo)原點,已知點A(1,2),在y軸的正半軸上確定點P,使△AOP為等腰三角形,則點P的坐標(biāo)為   
【答案】分析:有三種情況:①以O(shè)為圓心,以O(shè)A為半徑畫弧交Y軸于D,求出OA即可;②以A為圓心,以O(shè)A為半徑畫弧交Y軸于P,求出OP即可;③作OA的垂直平分線交Y軸于C,則AC=OC,根據(jù)勾股定理求出OC即可.
解答:解:有三種情況:①以O(shè)為圓心,以O(shè)A為半徑畫弧交Y軸于D,則OA=OD==;
∴D(0,);
②以A為圓心,以O(shè)A為半徑畫弧交Y軸于P,OP=4,
∴P(0,4);
③作OA的垂直平分線交Y軸于C,則AC=OC,
由勾股定理得:OC=AC=,
∴OC=,
∴C(0,);
故答案為:(0,),(0,4),(0,).
點評:本題主要考查對線段的垂直平分線,等腰三角形的性質(zhì)和判定,勾股定理,坐標(biāo)與圖形性質(zhì)等知識點的理解和掌握,能求出符合條件的所有情況是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點,點A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△精英家教網(wǎng)OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.
(1)如圖,當(dāng)C點在x軸上運動時,若設(shè)AC=x,請用x表示線段AD的長.
(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,當(dāng)C點運動到何處時直線EF∥直線BO?這時⊙F和直線BO相切的位置關(guān)系如何?請給予說明.
(4)G為CD與⊙F的交點,H為直線DF上的一個動點,連接HG、HC,求HG+HC的最小值,并將此最小值用x表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、在直角坐標(biāo)系中,O為坐標(biāo)原點,已知點A(1,1),在x軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF.連接AF并延長交x軸的正半軸于點B,連接OF,設(shè)OD=t.
(1)求tan∠FOB的值;
(2)用含t的代數(shù)式表示△OAB的面積S;
(3)是否存在點B,使以B,E,F(xiàn)為頂點的三角形與△OFE相似?若存在,請求出所有滿足要求的B點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,矩形AOBC在直角坐標(biāo)系中,O為原點,A在x軸上,B在y軸上,直線AB的函數(shù)關(guān)系式為y=-
43
x+8
,M是OB上的一點,若將梯形AMBC沿AM折疊,點B恰好落在x軸上的精英家教網(wǎng)點B′處,C的對應(yīng)點為C′.
(1)求出B′點和M點的坐標(biāo);
(2)求直線A C′的函數(shù)關(guān)系式;
(3)設(shè)一動點P從A點出發(fā),以每秒1個單位速度沿射線AB方向運動,過P作PQ⊥AB,交射線AM于Q;
①求運動t秒時,Q點的坐標(biāo);(用含t的代數(shù)式表示)
②以Q為圓心,以PQ的長為半徑作圓,當(dāng)t為何值時,⊙Q與y軸相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO是正三角形,若點B的坐標(biāo)是(-2,0),則點A的坐標(biāo)是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

同步練習(xí)冊答案