如圖,梯形ABCD中,AD∥BC,∠D=90°,以AB為直徑的⊙O與CD相切于E,與BC相交于F,若AB=4,AD=1,則圖中兩陰影部分面積之和為   
【答案】分析:梯形DAOE的面積-扇形AOE的面積=梯形中的陰影面積;小弓形的面積=扇形OBF的面積-△OBF的面積,讓兩個陰影相加即可.
解答:解:連接OE,作AG⊥OE于點G.
由已知可知,OA=2,AD=1,OE=2,
∴OG=1,
∴AG=,∠AOE=60°,
∵梯形中陰影面積=(2+1)×÷2-=-;
小弓形陰影面積=-2×÷2=-,
∴兩陰影部分相加=
點評:本題的難點是根據(jù)所給的已知條件求出梯形的下底,直角腰的長,及扇形的圓心角的度數(shù);關鍵是得到陰影的組成.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習冊答案