【題目】如圖所示,反映的是九(1)班學(xué)生外出乘車、步行、騎車的人數(shù)直方圖的一部分和圓形分布圖,下列說法①①九(1)班外出步行有8人;②在圓形統(tǒng)計圖中,步行人數(shù)所占的圓心角度數(shù)為82°;③九(1)班外出的學(xué)生共有40人;④若該校九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的人約有150人,其中正確的結(jié)論是( )
A.①②③
B.①③④
C.②③
D.②④
【答案】B
【解析】解:由扇形圖知乘車的人數(shù)是20人,占總?cè)藬?shù)的50%,所以九(1)班有20÷50%=40人,③正確;
所以騎車的占12÷40=30%,步行人數(shù)=40﹣12﹣20=8人,①正確;
步行人數(shù)所占的圓心角度數(shù)為360°×20%=72°,②錯誤;
如果該中學(xué)九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的學(xué)生約有500×30%=150人,④正確.
故正確的是①③④.
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(﹣3,6),B(﹣9,﹣3),以原點O為位似中心,相似比為 ,把△ABO縮小,則點A的對應(yīng)點A′的坐標(biāo)是( )
A.(﹣1,2)
B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)
D.(﹣1,2)或(1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)sin30°+3tan60°﹣cos245°.
(2)如圖,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊梅一上市,水果店的老板用1200元購進(jìn)一批楊梅,很快售完;老板又用2500元購進(jìn)第二批楊梅,所購件數(shù)是第一批的2倍,但進(jìn)價比第一批每件多了5元.第一批楊梅每件進(jìn)價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市校計劃購買甲、乙兩種樹苗共200株來綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲乙兩種樹苗成活率分別是90%和95%.
(1)若購買這種樹苗共用去5600元,則甲、乙兩種樹苗各購買了多少株?
(2)如果要求這200株樹苗的成活率不低于93%,那么乙種樹苗至少要購買多少株.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,點E在正方形ABCD的邊BC上,BF⊥AE于點F,DG⊥AE于點G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C分別在∠MAN的邊AM、AN上,點E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)2007年海南省城鎮(zhèn)居民人均可支配收入為 元,比2006年增長 %;
(2)求2008年海南省城鎮(zhèn)居民人均可支配收入(精確到1元),并補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)圖1指出:2005﹣2008年海南省城鎮(zhèn)居民人均可支配收入逐年 (填“增加”或“減少”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列結(jié)論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當(dāng)x<1時,函數(shù)值y隨x的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC與BC相交于點D,若BD=4,CD=2,則AC的長是( )
A.4
B.3
C.2
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com