請(qǐng)閱讀如下材料.如圖,已知正方形ABCD的對(duì)角線ACBD于點(diǎn)O,E是AC上一點(diǎn),AG⊥BE,垂足為G.求證:OE=OF.

(1)根據(jù)你的理解,上述證明思路的核心是利用______使問題得以解決,而證明過程中的關(guān)鍵是證出______.
(2)若上述命題改為:點(diǎn)E在AC的延長(zhǎng)線上,AG⊥BE交EB的延長(zhǎng)線于點(diǎn)G,延長(zhǎng)AG交DB的延長(zhǎng)線于點(diǎn)F,如圖,其他條件不變.求證:OF=OE.
證明:∵四邊形ABCD是正方形.
∴∠BOE=∠AOF=90°,且OA=OB.
又∵AG⊥BE,
∴∠1+∠3=90°=∠2+∠3,
即∠1=∠2,
∴Rt△BOE≌Rt△AOF(AAS),
∴OE=OF.
(1)三角形全等,∠1=∠2

(2)∵四邊形ABCD是正方形,
∴∠AOF=∠BOE=90°,且OA=OB,
又∵∠F+∠FAO=90°,∠E+∠FAO=90°,
即∠E=∠F
∴Rt△AOF≌Rt△BOE,
∴OE=OF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)課上,李老師出示了這樣一道題目:如圖1,正方形ABCD的邊長(zhǎng)為12,P為邊BC延長(zhǎng)線上的一點(diǎn),E為DP的中點(diǎn),DP的垂直平分線交邊DC于M,交邊AB的延長(zhǎng)線于N.當(dāng)CP=6時(shí),EM與EN的比值是多少?
經(jīng)過思考,小明展示了一種正確的解題思路:過E作直線平行于BC交DC,AB分別于F,G,如圖2,則可得:
DF
FC
=
DE
EP
,因?yàn)镈E=EP,所以DF=FC.可求出EF和EG的值,進(jìn)而可求得EM與EN的比值.
(1)請(qǐng)按照小明的思路寫出求解過程.
(2)小東又對(duì)此題作了進(jìn)一步探究,得出了DP=MN的結(jié)論,你認(rèn)為小東的這個(gè)結(jié)論正確嗎?如果正確,請(qǐng)給予證明;如果不正確,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,E、F分別在邊AD,AB上,且AE=BF=
1
3
AB,EF與AC交于點(diǎn)P.
(1)求EF:AE的值;
(2)設(shè)AB=x,四邊形BCPF的面積為y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將邊長(zhǎng)為an(n=1,2,3,…)的正方形紙片從左到右順次擺放,其對(duì)應(yīng)的正方形的中心依次為A1,A2,A3,…,且后一個(gè)正方形的頂點(diǎn)在前一個(gè)正方形的中心,若第n個(gè)正方形紙片被第n+1個(gè)正方形紙片蓋住部分的邊長(zhǎng)(即虛線的長(zhǎng)度)記為bn,已知a1=1,an-an-1=2,則b1+b2+b3+…+bn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖.邊長(zhǎng)為1的兩個(gè)正方形互相重合,按住其中一個(gè)不動(dòng),將另一個(gè)繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則這兩個(gè)正方形重疊部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知正方形ABCD的邊長(zhǎng)為6,E為CD邊上一點(diǎn),E′為CB延長(zhǎng)線上一點(diǎn),BE′=DE=1.連接EE′,則EE′的長(zhǎng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方形ABCD的面積35平方厘米,E、F分別為邊AB、BC上的點(diǎn),AF和CE相交于點(diǎn)G,并且△ABF的面積為5平方厘米,△BCE的面積為14平方厘米,那么四邊形BEGF的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線l1l2l3l4,相鄰兩條平行直線間的距離都是2,線段AB的兩端點(diǎn)分別在直線l1、l3上并與l2相交于點(diǎn)E,
①AE與BE的長(zhǎng)度大小關(guān)系為______;
②若以線段AB為一邊作正方形ABCD,C、D兩點(diǎn)恰好分別在直線l2、l4上,則sinα=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)正方形的對(duì)角線長(zhǎng)為4,則此正方形的面積為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案