點D是⊙O的直徑CA延長線上一點,點B在⊙O上,BD是⊙O的切線,且AB=AD.
(1)求證:點A是DO的中點.
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且△BEF的面積為8,cos∠BFA=,求△ACF的面積.
解:(1)連接OB,∵ BD是⊙O的切線,∴∠OBD=90°,
∵AB=AD,∴∠D=∠ABD,∴∠AOB=∠ABO,∴AB=AO,∴AB=AD.
(2)∵AC是直徑,∴∠ABF=90°, cos∠BFA=,∵∠E=∠C, ∠FAC=∠FBE,∴△FAC∽△FBE,∴△FAC的面積為18.
(1)利用斜邊上的中線等于斜邊的一半,可判斷△DOB是直角三角形,則∠OBD=90°,BD是⊙O的切線;
(2)同弧所對的圓周角相等,可證明△ACF∽△BEF,得出一相似比,再利用三角形的面積比等于相似比的平方即可求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA是⊙O的割線,且經(jīng)過圓心O,與⊙O交于B、A兩點,PD切⊙O于點D,AC是⊙O的一條弦,連結(jié)PC,且PC=PD.(1)求證:PC是⊙O的切線;(2)若AC=PD,連結(jié)BC.求證:AB="2BC"

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1和⊙O2外切,它們的半徑分別為2cm和5cm,則O1O2的長(  )
A.2cmB.3cmC.5cmD.7cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,AB是⊙O的直徑,點P在弧AB上(不含點A、B),把△AOP沿OP對折,點A的對應點C恰好落在⊙O上.
(1)當P、C都在AB上方時(如圖1),判斷PO與BC的位置關系(只回答結(jié)果);
(2)當P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當P、C都在AB上方時(如圖3),過C點作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點P是AB延長線上一點,PC切⊙O于點C,連結(jié)AC,過點O作AC的垂線
交AC于點D,交⊙O于點E.已知AB﹦8,∠P=30°.
(1) 求線段PC的長;(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在等腰直角三角形ABC中,點D為斜邊AB的中點,已知扇形GAD,HBD的圓心角∠DAG,∠DBH都等于90°,且AB=2,則圖中陰影部分的面積為__________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,是⊙外一點,的延長線交⊙于點和點,點在圓上,且,∠.

(1)求證:直線是⊙的切線;
(2)若⊙的直徑為10,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖一把打開的雨傘可近似的看成一個圓錐,傘骨(面料下方能夠把面料撐起來的支架)末端
各點所在圓的直徑AC長為12分米,傘骨AB長為9分米,那么制作這樣的一把雨傘至少需要綢布面料為
(   )平方分米   
A.36B.54C.27D.128

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個圓錐的側(cè)面積是底面積的2倍。則圓錐側(cè)面展開圖的扇形的圓心角是( )
A.1200B.1800C.2400D.3000

查看答案和解析>>

同步練習冊答案