【題目】一個(gè)數(shù)的平方等于它本身的數(shù)是________;一個(gè)數(shù)的立方等于它本身的數(shù)是________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場某柜臺銷售每臺進(jìn)價(jià)分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價(jià);
(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風(fēng)扇能否實(shí)現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新世紀(jì)百貨大樓“寶樂”牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)査,如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝盈利1200元,則每件童裝應(yīng)降價(jià)多少元?設(shè)每件童裝應(yīng)降價(jià)x元,可列方程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗在超市買一食品,外包裝上印有“總凈含量(200±5)g”的字樣.小明拿去稱了一下,發(fā)現(xiàn)只有197g.則食品生產(chǎn)廠家___________(填“有”或“沒有”)欺詐行為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對七年級學(xué)生數(shù)學(xué)學(xué)期成績的評價(jià)規(guī)定如下:學(xué)期評價(jià)得分由期末測試成績(滿分100分)和期中測試成績(滿分100分)兩部分組成,其中期末測試成績占70%,期中測試成績占30%,當(dāng)學(xué)期評價(jià)得分大于或等于85分時(shí),該生數(shù)學(xué)學(xué)期成績評價(jià)為優(yōu)秀.
(1)小明的期末測試成績和期中成績兩項(xiàng)得分之和為170分,學(xué)期評價(jià)得分為87分,則小明期末測試成績和期中測試成績各得多少分?
(2)某同學(xué)期末測試成績?yōu)?5分,他的綜合評價(jià)得分有可能達(dá)到優(yōu)秀嗎?為什么?
(3)如果一個(gè)同學(xué)學(xué)期評價(jià)得分要達(dá)到優(yōu)秀,他的期末測試成績至少要多少分(結(jié)果保留整數(shù))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象與坐標(biāo)軸交于A、B點(diǎn)(如圖),AE平分∠BAO,交x軸于點(diǎn)E.
(1)求點(diǎn)B的坐標(biāo);
(2)求直線AE的表達(dá)式;
(3)過點(diǎn)B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
(4)若將已知條件“AE平分∠BAO,交x軸于點(diǎn)E”改變?yōu)椤包c(diǎn)E是線段OB上的一個(gè)動點(diǎn)(點(diǎn)E不與點(diǎn)O、B重合)”,過點(diǎn)B作BF⊥AE,垂足為F.設(shè)OE=x,BF=y,試求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形的所有內(nèi)角與這個(gè)多邊形其中一個(gè)外角的和等于2020°,則這個(gè)多邊形的邊數(shù)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com